18 research outputs found

    Diversities and the Geometry of Hypergraphs

    Full text link
    The embedding of finite metrics in 1\ell_1 has become a fundamental tool for both combinatorial optimization and large-scale data analysis. One important application is to network flow problems in which there is close relation between max-flow min-cut theorems and the minimal distortion embeddings of metrics into 1\ell_1. Here we show that this theory can be generalized considerably to encompass Steiner tree packing problems in both graphs and hypergraphs. Instead of the theory of 1\ell_1 metrics and minimal distortion embeddings, the parallel is the theory of diversities recently introduced by Bryant and Tupper, and the corresponding theory of 1\ell_1 diversities and embeddings which we develop here.Comment: 19 pages, no figures. This version: further small correction

    Constant distortion embeddings of Symmetric Diversities

    Full text link
    Diversities are like metric spaces, except that every finite subset, instead of just every pair of points, is assigned a value. Just as there is a theory of minimal distortion embeddings of finite metric spaces into L1L_1, there is a similar, yet undeveloped, theory for embedding finite diversities into the diversity analogue of L1L_1 spaces. In the metric case, it is well known that an nn-point metric space can be embedded into L1L_1 with O(logn)\mathcal{O}(\log n) distortion. For diversities, the optimal distortion is unknown. Here, we establish the surprising result that symmetric diversities, those in which the diversity (value) assigned to a set depends only on its cardinality, can be embedded in L1L_1 with constant distortion.Comment: 14 pages, 3 figure

    Parsimonious Labeling

    Get PDF
    We propose a new family of discrete energy minimization problems, which we call parsimonious labeling. Specifically, our energy functional consists of unary potentials and high-order clique potentials. While the unary potentials are arbitrary, the clique potentials are proportional to the {\em diversity} of set of the unique labels assigned to the clique. Intuitively, our energy functional encourages the labeling to be parsimonious, that is, use as few labels as possible. This in turn allows us to capture useful cues for important computer vision applications such as stereo correspondence and image denoising. Furthermore, we propose an efficient graph-cuts based algorithm for the parsimonious labeling problem that provides strong theoretical guarantees on the quality of the solution. Our algorithm consists of three steps. First, we approximate a given diversity using a mixture of a novel hierarchical PnP^n Potts model. Second, we use a divide-and-conquer approach for each mixture component, where each subproblem is solved using an effficient α\alpha-expansion algorithm. This provides us with a small number of putative labelings, one for each mixture component. Third, we choose the best putative labeling in terms of the energy value. Using both sythetic and standard real datasets, we show that our algorithm significantly outperforms other graph-cuts based approaches

    Automorphism groups of universal diversities

    Full text link
    We prove that the automorphism group of the Urysohn diversity is a universal Polish group. Furthermore we show that the automorphism group of the rational Urysohn diversity has ample generics, a dense conjugacy class and that it embeds densely into the automorphism group of the (full) Urysohn diversity. It follows that this latter group also has a dense conjugacy class

    Geometry and Topology in Memory and Navigation

    Get PDF
    Okinawa Institute of Science and Technology Graduate UniversityDoctor of PhilosophyGeometry and topology offer rich mathematical worlds and perspectives with which to study and improve our understanding of cognitive function. Here I present the following examples: (1) a functional role for inhibitory diversity in associative memories with graph- ical relationships; (2) improved memory capacity in an associative memory model with setwise connectivity, with implications for glial and dendritic function; (3) safe and effi- cient group navigation among conspecifics using purely local geometric information; and (4) enhancing geometric and topological methods to probe the relations between neural activity and behaviour. In each work, tools and insights from geometry and topology are used in essential ways to gain improved insights or performance. This thesis contributes to our knowledge of the potential computational affordances of biological mechanisms (such as inhibition and setwise connectivity), while also demonstrating new geometric and topological methods and perspectives with which to deepen our understanding of cognitive tasks and their neural representations.doctoral thesi

    Faculty Scholarship Celebration 2021

    Get PDF
    Program and bibliography for Western Carolina University's annual Faculty Scholarship Celebration
    corecore