23,486 research outputs found

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    Secure and efficient application monitoring and replication

    Get PDF
    Memory corruption vulnerabilities remain a grave threat to systems software written in C/C++. Current best practices dictate compiling programs with exploit mitigations such as stack canaries, address space layout randomization, and control-flow integrity. However, adversaries quickly find ways to circumvent such mitigations, sometimes even before these mitigations are widely deployed. In this paper, we focus on an "orthogonal" defense that amplifies the effectiveness of traditional exploit mitigations. The key idea is to create multiple diversified replicas of a vulnerable program and then execute these replicas in lockstep on identical inputs while simultaneously monitoring their behavior. A malicious input that causes the diversified replicas to diverge in their behavior will be detected by the monitor; this allows discovery of previously unknown attacks such as zero-day exploits. So far, such multi-variant execution environments (MVEEs) have been held back by substantial runtime overheads. This paper presents a new design, ReMon, that is non-intrusive, secure, and highly efficient. Whereas previous schemes either monitor every system call or none at all, our system enforces cross-checking only for security critical system calls while supporting more relaxed monitoring policies for system calls that are not security critical. We achieve this by splitting the monitoring and replication logic into an in-process component and a cross-process component. Our evaluation shows that ReMon offers same level of security as conservative MVEEs and run realistic server benchmarks at near-native speeds

    Solving Complex Data-Streaming Problems by Applying Economic-Based Principles to Mobile and Wireless Resource Constraint Networks

    Get PDF
    The applications that employ mobile networks depend on the continuous input of reliable data collected by sensing devices. A common application is in military systems, where as an example, drones that are sent on a mission can communicate with each other, exchange sensed data, and autonomously make decisions. Although the mobility of nodes enhances the network coverage, connectivity, and scalability, it introduces pressing issues in data reliability compounded by restrictions in sensor energy resources, as well as limitations in available memory, and computational capacity. This dissertation investigates the issues that mobile networks encounter in providing reliable data. Our research goal is to develop a diverse set of novel data handling solutions for mobile sensor systems providing reliable data by considering the dynamic trajectory behavior relationships among nodes, and the constraints inherent to mobile nodes. We study the applicability of economic models, which are simplified versions of real-world situations that let us observe and make predictions about economic behavior, to our domain. First, we develop a data cleaning method by introducing the notion of “beta,” a measure that quantifies the risk associated with trusting the accuracy of the data provided by a node based on trajectory behavior similarity. Next, we study the reconstruction of highly incomplete data streams. Our method determines the level of trust in data accuracy by assigning variable “weights” considering the quality and the origin of data. Thirdly, we design a behavior-based data reduction and trend prediction technique using Japanese candlesticks. This method reduces the dataset to 5% of its original size while preserving the behavioral patterns. Finally, we develop a data cleaning distribution method for energy-harvesting networks. Based on the Leontief Input-Output model, this method increases the data that is run through cleaning and the network uptime

    Cloud-assisted body area networks: state-of-the-art and future challenges

    Get PDF
    Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed
    • …
    corecore