922 research outputs found

    Substructure and Boundary Modeling for Continuous Action Recognition

    Full text link
    This paper introduces a probabilistic graphical model for continuous action recognition with two novel components: substructure transition model and discriminative boundary model. The first component encodes the sparse and global temporal transition prior between action primitives in state-space model to handle the large spatial-temporal variations within an action class. The second component enforces the action duration constraint in a discriminative way to locate the transition boundaries between actions more accurately. The two components are integrated into a unified graphical structure to enable effective training and inference. Our comprehensive experimental results on both public and in-house datasets show that, with the capability to incorporate additional information that had not been explicitly or efficiently modeled by previous methods, our proposed algorithm achieved significantly improved performance for continuous action recognition.Comment: Detailed version of the CVPR 2012 paper. 15 pages, 6 figure

    Data-based fault detection in chemical processes: Managing records with operator intervention and uncertain labels

    Get PDF
    Developing data-driven fault detection systems for chemical plants requires managing uncertain data labels and dynamic attributes due to operator-process interactions. Mislabeled data is a known problem in computer science that has received scarce attention from the process systems community. This work introduces and examines the effects of operator actions in records and labels, and the consequences in the development of detection models. Using a state space model, this work proposes an iterative relabeling scheme for retraining classifiers that continuously refines dynamic attributes and labels. Three case studies are presented: a reactor as a motivating example, flooding in a simulated de-Butanizer column, as a complex case, and foaming in an absorber as an industrial challenge. For the first case, detection accuracy is shown to increase by 14% while operating costs are reduced by 20%. Moreover, regarding the de-Butanizer column, the performance of the proposed strategy is shown to be 10% higher than the filtering strategy. Promising results are finally reported in regard of efficient strategies to deal with the presented problemPeer ReviewedPostprint (author's final draft

    Hyperspectral Image Classification

    Get PDF
    Hyperspectral image (HSI) classification is a phenomenal mechanism to analyze diversified land cover in remotely sensed hyperspectral images. In the field of remote sensing, HSI classification has been an established research topic, and herein, the inherent primary challenges are (i) curse of dimensionality and (ii) insufficient samples pool during training. Given a set of observations with known class labels, the basic goal of hyperspectral image classification is to assign a class label to each pixel. This chapter discusses the recent progress in the classification of HS images in the aspects of Kernel-based methods, supervised and unsupervised classifiers, classification based on sparse representation, and spectral-spatial classification. Further, the classification methods based on machine learning and the future directions are discussed
    • …
    corecore