141,597 research outputs found

    Use of Information Visualization Techniques for Collection Management in Libraries: A Conceptual Review

    Get PDF
    This paper presents a conceptual review exploring the application of information visualization techniques in the context of collection management in libraries. Collection management plays a crucial role in ensuring libraries offer relevant and diverse resources to meet the information needs of users. Information visualization, with its ability to visually represent complex data, has emerged as a powerful tool for enhancing collection management practices. Drawing upon a comprehensive literature review, this paper examines the theoretical foundations, benefits, challenges, and practical applications of information visualization techniques in library collection management. It discusses various visualization methods, such as charts, graphs, and maps, and explores their potential in assessing collection composition, analyzing usage patterns, and supporting decision-making processes. The paper highlights the benefits of information visualization in improving user engagement, optimizing resource allocation, and facilitating data-driven decision making. It also addresses challenges related to data integration, technology infrastructure, and ethical considerations. Through real-world case studies and examples, this conceptual review provides insights into successful implementations of information visualization in collection management. The paper concludes by emphasizing the potential of information visualization techniques to transform collection management practices in libraries, enhancing the accessibility, relevance, and impact of library resources

    BiologicalNetworks: visualization and analysis tool for systems biology

    Get PDF
    Systems level investigation of genomic scale information requires the development of truly integrated databases dealing with heterogeneous data, which can be queried for simple properties of genes or other database objects as well as for complex network level properties, for the analysis and modelling of complex biological processes. Towards that goal, we recently constructed PathSys, a data integration platform for systems biology, which provides dynamic integration over a diverse set of databases [Baitaluk et al. (2006) BMC Bioinformatics 7, 55]. Here we describe a server, BiologicalNetworks, which provides visualization, analysis services and an information management framework over PathSys. The server allows easy retrieval, construction and visualization of complex biological networks, including genome-scale integrated networks of protein–protein, protein–DNA and genetic interactions. Most importantly, BiologicalNetworks addresses the need for systematic presentation and analysis of high-throughput expression data by mapping and analysis of expression profiles of genes or proteins simultaneously on to regulatory, metabolic and cellular networks. BiologicalNetworks Server is available at

    AmalgamScope: merging annotations data across the human genome

    Get PDF
    The past years have shown an enormous advancement in sequencing and array-based technologies, producing supplementary or alternative views of the genome stored in various formats and databases. Their sheer volume and different data scope pose a challenge to jointly visualize and integrate diverse data types. We present AmalgamScope a new interactive software tool focusing on assisting scientists with the annotation of the human genome and particularly the integration of the annotation files from multiple data types, using gene identifiers and genomic coordinates. Supported platforms include next-generation sequencing and microarray technologies. The available features of AmalgamScope range from the annotation of diverse data types across the human genome to integration of the data based on the annotational information and visualization of the merged files within chromosomal regions or the whole genome. Additionally, users can define custom transcriptome library files for any species and use the file exchanging distant server options of the tool

    Integrated web visualizations for protein-protein interaction databases

    Get PDF
    BACKGROUND: Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. RESULTS: We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. CONCLUSIONS: Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing

    SMART Infrastructure Dashboard: A Fusion between Business Intelligence and Geographic Information Systems

    Get PDF
    Abstract: Business Intelligence (BI) has popularly been adopted as a process that enables easy access, analysis and visualization of information through specialized set of tools for informed decision making. Two most noticeable characteristics of traditional BI is that it (a) is largely used in single-organization environments and (b) uses predominantly aspatial data. We believe that BI has applications beyond single-organization environments, but it very much requires integration of geospatial capabilities given the increasing availability of large volumes of spatial data and a growing interest to see things spatial. The SMART Infrastructure Dashboard (SID), our innovative solution that fuses BI and Geographic Information Systems (GIS), fills this significant gap. In this study, we demonstrate how SID can be used to perform spatio-temporal analysis and visualization of diverse sets of data to uncover complex interrelationships among utility usage, demographics and weather patterns at local and regional scale. Citation: Wickramasuriya, R., Ma, J., Somashekar, V., Perez, P. & Berryman, M. (2014). SMART Infrastructure Dashboard: A Fusion between Business Intelligence and Geographic Information Systems. In: Campbell P. and Perez P. (Eds), Proceedings of the International Symposium of Next Generation Infrastructure, 1-4 October 2013, SMART Infrastructure Facility, University of Wollongong, Australia

    Causally Linking Health Application Data and Personal Information Management Tools

    Full text link
    The proliferation of consumer health devices such as smart watches, sleep monitors, smart scales, etc, in many countries, has not only led to growing interest in health monitoring, but also to the development of a countless number of ``smart'' applications to support the exploration of such data by members of the general public, sometimes with integration into professional health services. While a variety of health data streams has been made available by such devices to users, these streams are often presented as separate time-series visualizations, in which the potential relationships between health variables are not explicitly made visible. Furthermore, despite the fact that other aspects of life, such as work and social connectivity, have become increasingly digitised, health and well-being applications make little use of the potentially useful contextual information provided by widely used personal information management tools, such as shared calendar and email systems. This paper presents a framework for the integration of these diverse data sources, analytic and visualization tools, with inference methods and graphical user interfaces to help users by highlighting causal connections among such time-series

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF
    • …
    corecore