504 research outputs found

    NMF-Based Comprehensive Latent Factor Learning with Multiview da

    Get PDF
    Multiview representations reveal the latent information of the data from different perspectives, consistency and complementarity. Unlike most multiview learning approaches, which focus only one perspective, in this paper, we propose a novel unsupervised multiview learning algorithm, called comprehensive latent factor learning (CLFL), which jointly exploits both consistent and complementary information among multiple views. CLFL adopts a non-negative matrix factorization based formulation to learn the latent factors. It learns the weights of different views automatically which makes the representation more accurate. Experiment results on a synthetic and several real datasets demonstrate the effectiveness of our approach

    An Analytical Performance Evaluation on Multiview Clustering Approaches

    Get PDF
    The concept of machine learning encompasses a wide variety of different approaches, one of which is called clustering. The data points are grouped together in this approach to the problem. Using a clustering method, it is feasible, given a collection of data points, to classify each data point as belonging to a specific group. This can be done if the algorithm is given the collection of data points. In theory, data points that constitute the same group ought to have attributes and characteristics that are equivalent to one another, however data points that belong to other groups ought to have properties and characteristics that are very different from one another. The generation of multiview data is made possible by recent developments in information collecting technologies. The data were collected from Ă  variety of sources and were analysed using a variety of perspectives. The data in question are what are known as multiview data. On a single view, the conventional clustering algorithms are applied. In spite of this, real-world data are complicated and can be clustered in a variety of different ways, depending on how the data are interpreted. In practise, the real-world data are messy. In recent years, Multiview Clustering, often known as MVC, has garnered an increasing amount of attention due to its goal of utilising complimentary and consensus information derived from different points of view. On the other hand, the vast majority of the systems that are currently available only enable the single-clustering scenario, whereby only makes utilization of a single cluster to split the data. This is the case since there is only one cluster accessible. In light of this, it is absolutely necessary to carry out investigation on the multiview data format. The study work is centred on multiview clustering and how well it performs compared to these other strategies

    One-step Multi-view Clustering with Diverse Representation

    Full text link
    Multi-view clustering has attracted broad attention due to its capacity to utilize consistent and complementary information among views. Although tremendous progress has been made recently, most existing methods undergo high complexity, preventing them from being applied to large-scale tasks. Multi-view clustering via matrix factorization is a representative to address this issue. However, most of them map the data matrices into a fixed dimension, which limits the expressiveness of the model. Moreover, a range of methods suffer from a two-step process, i.e., multimodal learning and the subsequent kk-means, inevitably causing a sub-optimal clustering result. In light of this, we propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and kk-means into a unified framework. Specifically, we first project original data matrices into various latent spaces to attain comprehensive information and auto-weight them in a self-supervised manner. Then we directly use the information matrices under diverse dimensions to obtain consensus discrete clustering labels. The unified work of representation learning and clustering boosts the quality of the final results. Furthermore, we develop an efficient optimization algorithm to solve the resultant problem with proven convergence. Comprehensive experiments on various datasets demonstrate the promising clustering performance of our proposed method

    Fast Continual Multi-View Clustering with Incomplete Views

    Full text link
    Multi-view clustering (MVC) has gained broad attention owing to its capacity to exploit consistent and complementary information across views. This paper focuses on a challenging issue in MVC called the incomplete continual data problem (ICDP). In specific, most existing algorithms assume that views are available in advance and overlook the scenarios where data observations of views are accumulated over time. Due to privacy considerations or memory limitations, previous views cannot be stored in these situations. Some works are proposed to handle it, but all fail to address incomplete views. Such an incomplete continual data problem (ICDP) in MVC is tough to solve since incomplete information with continual data increases the difficulty of extracting consistent and complementary knowledge among views. We propose Fast Continual Multi-View Clustering with Incomplete Views (FCMVC-IV) to address it. Specifically, it maintains a consensus coefficient matrix and updates knowledge with the incoming incomplete view rather than storing and recomputing all the data matrices. Considering that the views are incomplete, the newly collected view might contain samples that have yet to appear; two indicator matrices and a rotation matrix are developed to match matrices with different dimensions. Besides, we design a three-step iterative algorithm to solve the resultant problem in linear complexity with proven convergence. Comprehensive experiments on various datasets show the superiority of FCMVC-IV

    Asymmetric double-winged multi-view clustering network for exploring Diverse and Consistent Information

    Full text link
    In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views. Most existing DCMVC algorithms focus on exploring the consistency information for the deep semantic features, while ignoring the diverse information on shallow features. To fill this gap, we propose a novel multi-view clustering network termed CodingNet to explore the diverse and consistent information simultaneously in this paper. Specifically, instead of utilizing the conventional auto-encoder, we design an asymmetric structure network to extract shallow and deep features separately. Then, by aligning the similarity matrix on the shallow feature to the zero matrix, we ensure the diversity for the shallow features, thus offering a better description of multi-view data. Moreover, we propose a dual contrastive mechanism that maintains consistency for deep features at both view-feature and pseudo-label levels. Our framework's efficacy is validated through extensive experiments on six widely used benchmark datasets, outperforming most state-of-the-art multi-view clustering algorithms

    Scalable Incomplete Multi-View Clustering with Structure Alignment

    Full text link
    The success of existing multi-view clustering (MVC) relies on the assumption that all views are complete. However, samples are usually partially available due to data corruption or sensor malfunction, which raises the research of incomplete multi-view clustering (IMVC). Although several anchor-based IMVC methods have been proposed to process the large-scale incomplete data, they still suffer from the following drawbacks: i) Most existing approaches neglect the inter-view discrepancy and enforce cross-view representation to be consistent, which would corrupt the representation capability of the model; ii) Due to the samples disparity between different views, the learned anchor might be misaligned, which we referred as the Anchor-Unaligned Problem for Incomplete data (AUP-ID). Such the AUP-ID would cause inaccurate graph fusion and degrades clustering performance. To tackle these issues, we propose a novel incomplete anchor graph learning framework termed Scalable Incomplete Multi-View Clustering with Structure Alignment (SIMVC-SA). Specially, we construct the view-specific anchor graph to capture the complementary information from different views. In order to solve the AUP-ID, we propose a novel structure alignment module to refine the cross-view anchor correspondence. Meanwhile, the anchor graph construction and alignment are jointly optimized in our unified framework to enhance clustering quality. Through anchor graph construction instead of full graphs, the time and space complexity of the proposed SIMVC-SA is proven to be linearly correlated with the number of samples. Extensive experiments on seven incomplete benchmark datasets demonstrate the effectiveness and efficiency of our proposed method. Our code is publicly available at https://github.com/wy1019/SIMVC-SA
    • …
    corecore