3,292 research outputs found

    Noise-based volume rendering for the visualization of multivariate volumetric data

    Get PDF

    Graphical Perception of Continuous Quantitative Maps: the Effects of Spatial Frequency and Colormap Design

    Get PDF
    Continuous 'pseudocolor' maps visualize how a quantitative attribute varies smoothly over space. These maps are widely used by experts and lay citizens alike for communicating scientific and geographical data. A critical challenge for designers of these maps is selecting a color scheme that is both effective and aesthetically pleasing. Although there exist empirically grounded guidelines for color choice in segmented maps (e.g., choropleths), continuous maps are significantly understudied, and their color-coding guidelines are largely based on expert opinion and design heuristics--many of these guidelines have yet to be verified experimentally. We conducted a series of crowdsourced experiments to investigate how the perception of continuous maps is affected by colormap characteristics and spatial frequency (a measure of data complexity). We find that spatial frequency significantly impacts the effectiveness of color encodes, but the precise effect is task-dependent. While rainbow schemes afforded the highest accuracy in quantity estimation irrespective of spatial complexity, divergent colormaps significantly outperformed other schemes in tasks requiring the perception of high-frequency patterns. We interpret these results in relation to current practices and devise new and more granular guidelines for color mapping in continuous maps

    Evaluation of Artery Visualizations for Heart Disease Diagnosis

    Get PDF
    Heart disease is the number one killer in the United States, and finding indicators of the disease at an early stage is critical for treatment and prevention. In this paper we evaluate visualization techniques that enable the diagnosis of coronary artery disease. A key physical quantity of medical interest is endothelial shear stress (ESS). Low ESS has been associated with sites of lesion formation and rapid progression of disease in the coronary arteries. Having effective visualizations of a patient's ESS data is vital for the quick and thorough non-invasive evaluation by a cardiologist. We present a task taxonomy for hemodynamics based on a formative user study with domain experts. Based on the results of this study we developed HemoVis, an interactive visualization application for heart disease diagnosis that uses a novel 2D tree diagram representation of coronary artery trees. We present the results of a formal quantitative user study with domain experts that evaluates the effect of 2D versus 3D artery representations and of color maps on identifying regions of low ESS. We show statistically significant results demonstrating that our 2D visualizations are more accurate and efficient than 3D representations, and that a perceptually appropriate color map leads to fewer diagnostic mistakes than a rainbow color map.Engineering and Applied Science

    Review of Fluorescence Guided Surgery Visualization and Overlay Techniques

    Get PDF
    In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined. Five practical suggestions are outlined for optimal display orientation, color map, transparency/alpha function, dynamic range compression, and color perception check

    Comparing Experts and Novices on Scaffolded Data Visualizations using Eye-tracking

    Get PDF
    Spatially-based scientific data visualizations are becoming widely available, yet they are often not optimized for novice audiences. This study follows after an investigation of ex-pert and novice meaning-making from scaffolded data visualizations using clinical inter-views. Using eye-tracking and concurrent interviewing, we examined quantitative fixation and AOI data and qualitative scan path data for two expertise groups (N = 20) on five versions of scaffolded global ocean data visualizations. We found influences of expertise, scaffolding, and trial. In accordance with our clinical interview findings, experts use dif-ferent meaning-making strategies from novices, but novice performance improves with scaffolding and guided practice, providing triangulation. Eye-tracking data also provide insight on meaning-making and effectiveness of scaffolding that clinical interviews alone did not

    The misuse of colour in science communication

    Get PDF
    The accurate representation of data is essential in science communication. However, colour maps that visually distort data through uneven colour gradients or are unreadable to those with colour-vision deficiency remain prevalent in science. These include, but are not limited to, rainbow-like and red–green colour maps. Here, we present a simple guide for the scientific use of colour. We show how scientifically derived colour maps report true data variations, reduce complexity, and are accessible for people with colour-vision deficiencies. We highlight ways for the scientific community to identify and prevent the misuse of colour in science, and call for a proactive step away from colour misuse among the community, publishers, and the press

    GeoLinter: A Linting Framework for Choropleth Maps

    Full text link
    Visualization linting is a proven effective tool in assisting users to follow established visualization guidelines. Despite its success, visualization linting for choropleth maps, one of the most popular visualizations on the internet, has yet to be investigated. In this paper, we present GeoLinter, a linting framework for choropleth maps that assists in creating accurate and robust maps. Based on a set of design guidelines and metrics drawing upon a collection of best practices from the cartographic literature, GeoLinter detects potentially suboptimal design decisions and provides further recommendations on design improvement with explanations at each step of the design process. We perform a validation study to evaluate the proposed framework's functionality with respect to identifying and fixing errors and apply its results to improve the robustness of GeoLinter. Finally, we demonstrate the effectiveness of the GeoLinter - validated through empirical studies - by applying it to a series of case studies using real-world datasets.Comment: to appear in IEEE Transactions on Visualization and Computer Graphic
    • …
    corecore