68,453 research outputs found

    Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

    Full text link
    Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.Comment: The first two authors contribute equall

    Dynamic Phase Transition, Universality, and Finite-size Scaling in the Two-dimensional Kinetic Ising Model in an Oscillating Field

    Full text link
    We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a square-wave oscillating external field. We focus on the multi-droplet regime where the metastable phase decays through nucleation and growth of many droplets of the stable phase. At a critical frequency, the system undergoes a genuine non-equilibrium phase transition, in which the symmetry-broken phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The critical exponents, the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution all are consistent with the universality class of the two-dimensional equilibrium Ising model. We also study the cross-over from the multi-droplet to the strong-field regime, where the transition disappears

    The IR-Completion of Gravity: What happens at Hubble Scales?

    Full text link
    We have recently proposed an "Ultra-Strong" version of the Equivalence Principle (EP) that is not satisfied by standard semiclassical gravity. In the theory that we are conjecturing, the vacuum expectation value of the (bare) energy momentum tensor is exactly the same as in flat space: quartically divergent with the cut-off and with no spacetime dependent (subleading) ter ms. The presence of such terms seems in fact related to some known difficulties, such as the black hole information loss and the cosmological constant problem. Since the terms that we want to get rid of are subleading in the high-momentum expansion, we attempt to explore the conjectured theory by "IR-completing" GR. We consider a scalar field in a flat FRW Universe and isolate the first IR-correction to its Fourier modes operators that kills the quadratic (next to leading) time dependent divergence of the stress energy tensor VEV. Analogously to other modifications of field operators that have been proposed in the literature (typically in the UV), the present approach seems to suggest a breakdown (here, in the IR, at large distances) of the metric manifold description. We show that corrections to GR are in fact very tiny, become effective at distances comparable to the inverse curvature and do not contain any adjustable parameter. Finally, we derive some cosmological implications. By studying the consistency of the canonical commutation relations, we infer a correction to the distance between two comoving observers, which grows as the scale factor only when small compared to the Hubble length, but gets relevant corrections otherwise. The corrections to cosmological distance measures are also calculable and, for a spatially flat matter dominated Universe, go in the direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde

    Corrections to scaling in entanglement entropy from boundary perturbations

    Full text link
    We investigate the corrections to scaling of the Renyi entropies of a region of size l at the end of a semi-infinite one-dimensional system described by a conformal field theory when the corrections come from irrelevant boundary operators. The corrections from irrelevant bulk operators with scaling dimension x have been studied by Cardy and Calabrese (2010), and they found not only the expected corrections of the form l^(4-2x) but also unusual corrections that could not have been anticipated by finite-size scaling arguments alone. However, for the case of perturbations from irrelevant boundary operators we find that the only corrections that can occur to leading order are of the form l^(2-2x_b) for boundary operators with scaling dimension x_b < 3/2, and l^(-1) when x_b > 3/2. When x_b=3/2 they are of the form l^(-1)log(l). A marginally irrelevant boundary perturbation will give leading corrections going as log(l)^(-3). No unusual corrections occur when perturbing with a boundary operator.Comment: 8 pages. Minor improvements and updated references. Published versio

    Politeness and face in digitally reconfigured e-learning spaces

    Get PDF
    This paper has two starting points. The first is a theorization about the way in which “rhetorical space” is reshaped in asynchronous, online, learning environments. In particular, an asynchronous bulletin- board (ABB) discussion offers both opportunities and constraints for teaching and learning. The learning that occurs will be affected by the affordances implicit in the design of the conversational space itself and the communicative practices engaged in by both teachers and students. The second starting point is a small case study, utilizing action research and discourse analytical strategies, whose research participants were the author and students involved in “delivering” and “receiving” an online education course at post-graduate level using asynchronous discussion. The course, taught in English, had a mix of Chinese students (for whom English was an additional language) and native English speakers. The paper will report on students’ perceptions of what worked for them and what didn’t in respect of this elearning environment. It will also use concepts such as politeness, face and positioning to analyse aspects of the participants’ communicative practices and will draw conclusions from these in respect of how successful learning can occur in elearning environments with multicultural and multilingual students. It will make connections between the findings of this case study and other research on asynchronous, web-based learning and will makes some suggestions about what is needed in respect of the future research agenda

    Holographic Non-Fermi Liquid in a Background Magnetic Field

    Full text link
    We study the effects of a non-zero magnetic field on a class of 2+1 dim non-Fermi liquids, recently found in 0903.2477 by considering properties of a fermionic probe in an extremal AdS^4 black hole background. Introducing a similar fermionic probe in a dyonic AdS^4 black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion's charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasi particle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de Haas-van Alphen effect.Comment: 20 pages, latex, 6 figure
    • …
    corecore