293 research outputs found

    Asynchronous switching control for fuzzy Markov jump systems with periodically varying delay and its application to electronic circuits

    Get PDF
    This article focuses on addressing the issue of asynchronous H∞ control for Takagi-Sugeno (T-S) fuzzy Markov jump systems with generally incomplete transition probabilities (TPs). The delay is assumed to vary periodically, resulting in one monotonically increasing interval and one monotonically decreasing interval during each period. Meanwhile, a new Lyapunov-Krasovskii functional (LKF) is devised, which depends on membership functions (MFs) and two looped functions formulated for the monotonic intervals. Since the modes and TPs of the original system are assumed to be unavailable, an asynchronous switching fuzzy controller on the basis of hidden Markov model is proposed to stabilize the fuzzy Markov jump systems (FMJSs) with generally incomplete TPs. Consequently, a stability criterion with improved practicality and reduced conservatism is derived, ensuring the stochastic stability and H∞ performance of the closed-loop system. Finally, this technique is employed to the tunnel diode circuit system, and a comparison example is given, which verifies the practicality and superiority of the method

    Finite-time stochastic input-to-state stability and observer-based controller design for singular nonlinear systems

    Get PDF
    This paper investigated observer-based controller for a class of singular nonlinear systems with state and exogenous disturbance-dependent noise. A new sufficient condition for finite-time stochastic input-to-state stability (FTSISS) of stochastic nonlinear systems is developed. Based on the sufficient condition, a sufficient condition on impulse-free and FTSISS for corresponding closed-loop error systems is provided. A linear matrix inequality condition, which can calculate the gains of the observer and state-feedback controller, is developed. Finally, two simulation examples are employed to demonstrate the effectiveness of the proposed approaches

    Fuzzy-Affine-Model-Based Output Feedback Dynamic Sliding Mode Controller Design of Nonlinear Systems

    Get PDF

    Research on Advanced Control Strategies for Vehicle Active Seat Suspension Systems

    Get PDF
    Vehicle seat suspensions play a very important role in vibration reduction for vehicle drivers, especially for some heavy vehicles. Compared with small vehicles, these heavy vehicle drivers suffer much more from vibrations, which influence driving comfort and may cause health problems, so seat suspensions are necessary for those heavy vehicle drivers to reduce vibrations and improve driving comfort. Advanced control systems and control strategies are investigated for vehicle seat suspensions in this project. Firstly, for an active single-degree of freedom (single-DOF) seat suspension, a singular system-based approach for active vibration control of vehicle seat suspensions is proposed, where the drivers’ acceleration is augmented into the conventional seat suspension model together with seat suspension deflection and relative velocity as system states to make the suspen- sion model as a singular system. Then, an event-triggered H∞ controller is designed for an active seat suspension, where both the continuous and discrete-time event-triggered schemes are considered, respectively. The proposed control method can reduce the work- load of data transmission of the seat suspension system and work as a filter to remove the effect of noise, so it can decrease the precision requirement of the actuator, which can help to reduce the cost of the seat suspension. For complicated seat suspension systems, a singular active seat suspension system with a human body model is also established and an output-feedback event-triggered H∞ controller is designed. The accelerations of each part are considered as part of the system states, which makes the system a singular sys- tem. The seat suspension deflection, relative velocity, the accelerations of the seat frame, body torso, and head are defined as the system outputs. At last, to deal with whole-body vibration, a control system and a robust H∞ control strategy are designed for a 2-DOF seat suspension system. Two H∞ controllers are designed to reduce vertical and rotational vibrations simultaneously. All the proposed seat suspension systems and control methods are verified by simulations and some are also tested by experiments. These simulation and experimental results show their effectiveness and advantages of the proposed methods to improve the driving comfort and some can reduce the workload of data transmission

    Double Asynchronous Switching Control for Takagi–Sugeno Fuzzy Markov Jump Systems via Adaptive Event-Triggered Mechanism

    Get PDF
    This article addresses the issue of adaptive event- triggered H∞ control for Markov jump systems based on Takagi-Sugeno (T-S) fuzzy model. Firstly, a new double asynchronous switching controller is presented to deal with the problem of the mismatch of premise variables and modes between the controller and the plant, which is widespread in real network environment. To further reduce the power consumption of communication, a switching adaptive event-triggered mechanism is adopted to relieve the network transmission pressure while ensuring the control effect. In addition, a new Lyapunov-Krasovskii functional (LKF) is constructed to reduce conservatism by introducing the membership functions (MFs) and time-varying delays informa- tion. Meanwhile, the invariant set is estimated to ensure the stability of the system. And the disturbance rejection ability is measured by the optimal H∞ performance index. Finally, two examples are presented to demonstrate the effectiveness of the proposed approach

    Design of Event-Triggered Asynchronous H∞ Filter for Switched Systems Using the Sampled-Data Approach

    Get PDF
    The design of networked switched systems with event-based communication is attractive due to its potential to save bandwidth and energy. However, ensuring the stability and performance of networked systems with event-triggered communication and asynchronous switching is challenging due to their time-varying nature. This paper presents a novel sampled-data approach to design event-triggered asynchronous H∞ filters for networked switched systems. Unlike most existing event-based filtering results, which either design the event-triggering scheme only or co-design the event-triggering condition and the filter, we consider that the event-triggering policy is predefined and synthesize the filter. We model the estimation error system as an event-triggered switched system with time delay and non-uniform sampling. By implementing a delay-dependent multiple Lyapunov method, we derive sufficient conditions to ensure the global asymptotic stability of the filtering error system and an H∞ performance level. The efficacy of the proposed design technique and the superiority of the filter performance is illustrated by numerical examples and by comparing the performance with a recent result
    • …
    corecore