526 research outputs found

    Detection of replay attacks in cyber-physical systems using a frequency-based signature

    Get PDF
    This paper proposes a frequency-based approach for the detection of replay attacks affecting cyber-physical systems (CPS). In particular, the method employs a sinusoidal signal with a time-varying frequency (authentication signal) into the closed-loop system and checks whether the time profile of the frequency components in the output signal are compatible with the authentication signal or not. In order to carry out this target, the couplings between inputs and outputs are eliminated using a dynamic decoupling technique based on vector fitting. In this way, a signature introduced on a specific input channel will affect only the output that is selected to be associated with that input, which is a property that can be exploited to determine which channels are being affected. A bank of band-pass filters is used to generate signals whose energies can be compared to reconstruct an estimation of the time-varying frequency profile. By matching the known frequency profile with its estimation, the detector can provide the information about whether a replay attack is being carried out or not. The design of the signal generator and the detector are thoroughly discussed, and an example based on a quadruple-tank process is used to show the application and effectiveness of the proposed method.Peer ReviewedPostprint (author's final draft

    Modelling & analysis of hybrid dynamic systems using a bond graph approach

    Get PDF
    Hybrid models are those containing continuous and discontinuous behaviour. In constructing dynamic systems models, it is frequently desirable to abstract rapidly changing, highly nonlinear behaviour to a discontinuity. Bond graphs lend themselves to systems modelling by being multi-disciplinary and reflecting the physics of the system. One advantage is that they can produce a mathematical model in a form that simulates quickly and efficiently. Hybrid bond graphs are a logical development which could further improve speed and efficiency. A range of hybrid bond graph forms have been proposed which are suitable for either simulation or further analysis, but not both. None have reached common usage. A Hybrid bond graph method is proposed here which is suitable for simulation as well as providing engineering insight through analysis. This new method features a distinction between structural and parametric switching. The controlled junction is used for the former, and gives rise to dynamic causality. A controlled element is developed for the latter. Dynamic causality is unconstrained so as to aid insight, and a new notation is proposed. The junction structure matrix for the hybrid bond graph features Boolean terms to reflect the controlled junctions in the graph structure. This hybrid JSM is used to generate a mixed-Boolean state equation. When storage elements are in dynamic causality, the resulting system equation is implicit. The focus of this thesis is the exploitation of the model. The implicit form enables application of matrix-rank criteria from control theory, and control properties can be seen in the structure and causal assignment. An impulsive mode may occur when storage elements are in dynamic causality, but otherwise there are no energy losses associated with commutation because this method dictates the way discontinuities are abstracted. The main contribution is therefore a Hybrid Bond Graph which reflects the physics of commutating systems and offers engineering insight through the choice of controlled elements and dynamic causality. It generates a unique, implicit, mixed-Boolean system equation, describing all modes of operation. This form is suitable for both simulation and analysis

    Deterministic and Probabilistic Boolean Control Networks and their application to Gene Regulatory Networks

    Get PDF
    This thesis focuses on Deterministic and Probabilistic Boolean Control Networks and their application to some specific Gene Regulatory Networks. At first, some introductory materials about Boolean Logic, Left Semi-tensor Product and Probability are presented in order to explain in detail the concepts of Boolean Networks, Boolean Control Networks, Probabilistic Boolean Networks and Probabilistic Boolean Control Networks. These networks can be modelled in state-space and their representation, obtained by means of the left semi-tensor product, is called algebraic form. Subsequently, the thesis concentrates on presenting the fundamental properties of these networks such as the classical Systems Theory properties of stability, reachability, controllability and stabilisation. Afterwards, the attention is drawn towards the comparison between deterministic and probabilistic boolean networks. Finally, two examples of Gene Regulatory Networks are modelled and analysed by means of a Boolean Network and a Probabilistic Boolean Network.This thesis focuses on Deterministic and Probabilistic Boolean Control Networks and their application to some specific Gene Regulatory Networks. At first, some introductory materials about Boolean Logic, Left Semi-tensor Product and Probability are presented in order to explain in detail the concepts of Boolean Networks, Boolean Control Networks, Probabilistic Boolean Networks and Probabilistic Boolean Control Networks. These networks can be modelled in state-space and their representation, obtained by means of the left semi-tensor product, is called algebraic form. Subsequently, the thesis concentrates on presenting the fundamental properties of these networks such as the classical Systems Theory properties of stability, reachability, controllability and stabilisation. Afterwards, the attention is drawn towards the comparison between deterministic and probabilistic boolean networks. Finally, two examples of Gene Regulatory Networks are modelled and analysed by means of a Boolean Network and a Probabilistic Boolean Network
    • …
    corecore