288 research outputs found

    Distributive Laws for Monotone Specifications

    Get PDF
    Turi and Plotkin introduced an elegant approach to structural operational semantics based on universal coalgebra, parametric in the type of syntax and the type of behaviour. Their framework includes abstract GSOS, a categorical generalisation of the classical GSOS rule format, as well as its categorical dual, coGSOS. Both formats are well behaved, in the sense that each specification has a unique model on which behavioural equivalence is a congruence. Unfortunately, the combination of the two formats does not feature these desirable properties. We show that monotone specifications - that disallow negative premises - do induce a canonical distributive law of a monad over a comonad, and therefore a unique, compositional interpretation.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.0004

    Bisimilarity of Open Terms in Stream GSOS

    Get PDF
    Stream GSOS is a specification format for operations and calculi on infinite sequences. The notion of bisimilarity provides a canonical proof technique for equivalence of closed terms in such specifications. In this paper, we focus on open terms, which may contain variables, and which are equivalent whenever they denote the same stream for every possible instantiation of the variables. Our main contribution is to capture equivalence of open terms as bisimilarity on certain Mealy machines, providing a concrete proof technique. Moreover, we introduce an enhancement of this technique, called bisimulation up-to substitutions, and show how to combine it with other up-to techniques to obtain a powerful method for proving equivalence of open terms

    Coinduction up to in a fibrational setting

    Get PDF
    Bisimulation up-to enhances the coinductive proof method for bisimilarity, providing efficient proof techniques for checking properties of different kinds of systems. We prove the soundness of such techniques in a fibrational setting, building on the seminal work of Hermida and Jacobs. This allows us to systematically obtain up-to techniques not only for bisimilarity but for a large class of coinductive predicates modelled as coalgebras. By tuning the parameters of our framework, we obtain novel techniques for unary predicates and nominal automata, a variant of the GSOS rule format for similarity, and a new categorical treatment of weak bisimilarity

    A view of canonical extension

    Get PDF
    This is a short survey illustrating some of the essential aspects of the theory of canonical extensions. In addition some topological results about canonical extensions of lattices with additional operations in finitely generated varieties are given. In particular, they are doubly algebraic lattices and their interval topologies agree with their double Scott topologies and make them Priestley topological algebras.Comment: 24 pages, 2 figures. Presented at the Eighth International Tbilisi Symposium on Language, Logic and Computation Bakuriani, Georgia, September 21-25 200

    Up-to Techniques for Branching Bisimilarity

    Full text link
    Ever since the introduction of behavioral equivalences on processes one has been searching for efficient proof techniques that accompany those equivalences. Both strong bisimilarity and weak bisimilarity are accompanied by an arsenal of up-to techniques: enhancements of their proof methods. For branching bisimilarity, these results have not been established yet. We show that a powerful proof technique is sound for branching bisimilarity by combining the three techniques of up to union, up to expansion and up to context for Bloom's BB cool format. We then make an initial proposal for casting the correctness proof of the up to context technique in an abstract coalgebraic setting, covering branching but also {\eta}, delay and weak bisimilarity
    corecore