538 research outputs found

    An Innovative Multiple Attribute Based Distributed Clustering with Sleep/Wake Scheduling Mechanism for WSN

    Get PDF
    Wireless sensor network is a dynamic field of networking and communication because of its increasing demand in critical Industrial and Robotics applications. Clustering is the technique mainly used in the WSN to deal with large load density for efficient energy conservation. Formation of number of duplicate clusters in the clustering algorithm decreases the throughput and network lifetime of WSN. To deal with this problem, advance distributive energy-efficient adaptive clustering protocol with sleep/wake scheduling algorithm (DEACP-S/W) for the selection of optimal cluster head is presented in this paper. The presented sleep/wake cluster head scheduling along with distributive adaptive clustering protocol helps in reducing the transmission delay by properly balancing of load among nodes. The performance of algorithm is evaluated on the basis of network lifetime, throughput, average residual energy, packet delivered to the base station (BS) and CH of nodes. The results are compared with standard LEACH and DEACP protocols and it is observed that the proposed protocol performs better than existing algorithms. Throughput is improved by 8.1% over LEACH and by 2.7% over DEACP. Average residual energy is increased by 6.4% over LEACH and by 4% over DEACP. Also, the network is operable for nearly 33% more rounds compared to these reference algorithms which ultimately results in increasing lifetime of the Wireless Sensor Network

    Energy Conservation Clustering in Wireless Sensor Networks for Increased Life Time

    Get PDF
    Energy has always been the main issue for wireless sensor networks because in many situations battery recharging or replenishment is not possible. Many solutions have been provided for energy conservation. Clustering protocols have been successful for solving this issue to an extent but are not perfect. In our proposed algorithm we utilize the ability of the sensor nodes to control their transmission power range. By utilizing this ability we are able to minimize their intra cluster energy. Although this is local energy saving but this leads us to minimization of overall network energy consumption. The other thing that can be considered is about the task of a cluster head in clustering algorithms where cluster-head is doing the task as transmitter and receiver simultaneously. Providing these tasks to a single node is not efficient. So we are introducing the notion of a special node called s-node where this s-node is working as a transmitter for a cluster and sending the aggregated data to the sink. We have simulated the proposed scheme with LEACH and LEACH-C protocol and simulation results show that the proposed scheme is better in terms of network life time than both protocols

    Abstract — Wireless Multimedia Sensor Networks

    Get PDF
    (WMSN) can handle different traffic classes of multimedia content (video, audio streams and still images) as well as scalar data over the network. Use of general and efficient routing protocols for WMSN is of crucial significance. Similar to other traditional networks, in WMSN a noticeable proportion of energy is consumed due to communications. Many routing protocols have been proposed for WMSN. The design of more efficient protocols in terms of energy awareness, video packet scheduling and QoS in terms of checkpoint arrangement still remains a challenge. This paper proposes the actuation of sensor on demand basis and routing protocol based on cost function which efficiently utilizes the network resources such as the intermediate nodes energy and load. Cost function is introduced to improve the route selection and control congestion. Simulation results, using the NS-2 simulator show that the proposed protocol prolongs the network lifetime, increase the reliability and decrease the network load

    Enhancement of Performance Metrics of Heterogeneous Wireless Camera Sensor Network with Functionalization of Extensive Zonal Stable Election Protocol using Threshold Amplification and Residual Energy

    Get PDF
    We report a new improved energy competent and optimized data packet flow protocol with Hierarchical Clustering utilized in Wireless camera Sensor Network.The existing Extensive Zonal Stable Election Protocol has been modified along with the threshold parameters amplification and residual energy. It incorporates dynamic hybrid method with finite number of Member Sensor nodes (MSN) in proximity with the base station share their data directly , while the rest of the farther nodes form a cluster for data transference using Cluster Head. The performance metrics accompanied by heterogeneity, longer network survival and better throughput have been improved. The network field was divided into 4 zones with a gateway for defined region 2, 3, and 4. The criterion for zone division remained on the energy status (residual) of the MSNs and distance from the BS and the formulated field characteristics in the simulation were kept unknown. The obtained results demonstrate that our proposed modified version of EZSE protocol considerably performs better than existing EZ-SEP, Z-SEP, SEP, LEACH, Mod-Leach protocols during entire stability timeframe. The notable achievement is also reported in throughput as the same is enhanced more than  by ~ 39%, 43%, 49% ,56%, 53% while total packets communicated with base station has been increased more than by ~ 127%, 131%, 147%, 151%, 148% stability of the network is also improved more than by ~ 37%, 42%, 45%, 49%, 51% with the corresponding increase in the heterogeneity of networks

    Lightweight multi-agent framework for a cluster-based wireless sensor network

    Get PDF
    Sensor applications and wireless sensor networks (WSNs) are becoming a part of our everyday life. A number of network arrangements are used in WSN. In this paper, we focus on the cluster based network to help identify the issues associated with communication within such networks. We present a light- weight multi-agent routing framework for a cluster based WSN to resolve some issues associated with such networks. By using state- of-art protocol in a unique combination and categorizing cluster layers, we take full advantage of the properties of the selected protocols. The simulation results illustrate that the proposed method is light-weight in terms of energy consumption by the sensor nodes communicating information within a cluster based network. Nevertheless, high network throughput and robust data communication are also achieved

    Introducing Connected Dominating Set as Selection Feature of Cluster Heads in Hierarchical Protocols of Wireless Sensor Networks

    Get PDF
    It has been found that almost all routing protocols do suffer from efficiency of its operation regarding data transfer from one point to another. To overcome this process algorithm regarding the choice of nodes as cluster heads has to be done with utmost care. Failing of this leads to unnecessary dissipation of energy such as generating excess ‘Hello’ messages and less useful data transfer. In this communication we show that the introduction of connected dominating set as one of the metric regarding the choice of cluster head leads to better data transfer and energy consumption. Moreover we implemented this concept in LEACH protocol and found acceptable improvement in the performance parameters of the protocol

    Token Bucket Algorithm with Modernization Techniques to Avoid Congestion in DEC Protocol of Wsn

    Get PDF
    A wireless sensor system is an essential aspect in many fields. It consists of a great deal of sensor nodes. These sensor networks carry out a number of tasks, including interaction, distribution, recognition, and power supply. Data is transmitted from source to destination and plays an important role. Congestion may occur during data transmission from one node to another and also at cluster head locations. Congestion will arise as a result of either traffic division or resource allocation. Energy will be wasted due to traffic division congestion, which causes packet loss and retransmission of removed packets. As a result, it must be simplified; hence there are a few Wireless sensor networks with various protocols that will handle Congestion Control. The Deterministic Energy Efficient Clustering (DEC) protocol, which is fully based on residual energy and the token bucket method, is being investigated as a way to increase the energy efficiency. In the event of congestion, our proposal provides a way to cope with it and solves it using this method to improve lifespan of the sensor networks. Experiments in simulation show that the proposed strategy can significantly enhance lifetime, energy, throughput, and packet loss

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN
    corecore