70 research outputs found

    Non-Smooth, H\"older-Smooth, and Robust Submodular Maximization

    Full text link
    We study the problem of maximizing a continuous DR-submodular function that is not necessarily smooth. We prove that the continuous greedy algorithm achieves an [(1-1/e)\OPT-\epsilon] guarantee when the function is monotone and H\"older-smooth, meaning that it admits a H\"older-continuous gradient. For functions that are non-differentiable or non-smooth, we propose a variant of the mirror-prox algorithm that attains an [(1/2)\OPT-\epsilon] guarantee. We apply our algorithmic frameworks to robust submodular maximization and distributionally robust submodular maximization under Wasserstein ambiguity. In particular, the mirror-prox method applies to robust submodular maximization to obtain a single feasible solution whose value is at least (1/2)\OPT-\epsilon. For distributionally robust maximization under Wasserstein ambiguity, we deduce and work over a submodular-convex maximin reformulation whose objective function is H\"older-smooth, for which we may apply both the continuous greedy and the mirror-prox algorithms

    Adversarially Robust Submodular Maximization under Knapsack Constraints

    Full text link
    We propose the first adversarially robust algorithm for monotone submodular maximization under single and multiple knapsack constraints with scalable implementations in distributed and streaming settings. For a single knapsack constraint, our algorithm outputs a robust summary of almost optimal (up to polylogarithmic factors) size, from which a constant-factor approximation to the optimal solution can be constructed. For multiple knapsack constraints, our approximation is within a constant-factor of the best known non-robust solution. We evaluate the performance of our algorithms by comparison to natural robustifications of existing non-robust algorithms under two objectives: 1) dominating set for large social network graphs from Facebook and Twitter collected by the Stanford Network Analysis Project (SNAP), 2) movie recommendations on a dataset from MovieLens. Experimental results show that our algorithms give the best objective for a majority of the inputs and show strong performance even compared to offline algorithms that are given the set of removals in advance.Comment: To appear in KDD 201

    Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications

    Full text link
    We consider a general conic mixed-binary set where each homogeneous conic constraint involves an affine function of independent continuous variables and an epigraph variable associated with a nonnegative function, fjf_j, of common binary variables. Sets of this form naturally arise as substructures in a number of applications including mean-risk optimization, chance-constrained problems, portfolio optimization, lot-sizing and scheduling, fractional programming, variants of the best subset selection problem, and distributionally robust chance-constrained programs. When all of the functions fjf_j's are submodular, we give a convex hull description of this set that relies on characterizing the epigraphs of fjf_j's. Our result unifies and generalizes an existing result in two important directions. First, it considers \emph{multiple general convex cone} constraints instead of a single second-order cone type constraint. Second, it takes \emph{arbitrary nonnegative functions} instead of a specific submodular function obtained from the square root of an affine function. We close by demonstrating the applicability of our results in the context of a number of broad problem classes.Comment: 21 page
    • …
    corecore