3,241 research outputs found

    The Symmetrical HqH_{q}-Semiclassical Orthogonal Polynomials of Class One

    Get PDF
    We investigate the quadratic decomposition and duality to classify symmetrical HqH_{q}-semiclassical orthogonal qq-polynomials of class one where HqH_{q} is the Hahn's operator. For any canonical situation, the recurrence coefficients, the qq-analog of the distributional equation of Pearson type, the moments and integral or discrete representations are given

    Fractal Tube Formulas for Compact Sets and Relative Fractal Drums: Oscillations, Complex Dimensions and Fractality

    Full text link
    We establish pointwise and distributional fractal tube formulas for a large class of relative fractal drums in Euclidean spaces of arbitrary dimensions. A relative fractal drum (or RFD, in short) is an ordered pair (A,Ω)(A,\Omega) of subsets of the Euclidean space (under some mild assumptions) which generalizes the notion of a (compact) subset and that of a fractal string. By a fractal tube formula for an RFD (A,Ω)(A,\Omega), we mean an explicit expression for the volume of the tt-neighborhood of AA intersected by Ω\Omega as a sum of residues of a suitable meromorphic function (here, a fractal zeta function) over the complex dimensions of the RFD (A,Ω)(A,\Omega). The complex dimensions of an RFD are defined as the poles of its meromorphically continued fractal zeta function (namely, the distance or the tube zeta function), which generalizes the well-known geometric zeta function for fractal strings. These fractal tube formulas generalize in a significant way to higher dimensions the corresponding ones previously obtained for fractal strings by the first author and van Frankenhuijsen and later on, by the first author, Pearse and Winter in the case of fractal sprays. They are illustrated by several interesting examples. These examples include fractal strings, the Sierpi\'nski gasket and the 3-dimensional carpet, fractal nests and geometric chirps, as well as self-similar fractal sprays. We also propose a new definition of fractality according to which a bounded set (or RFD) is considered to be fractal if it possesses at least one nonreal complex dimension or if its fractal zeta function possesses a natural boundary. This definition, which extends to RFDs and arbitrary bounded subsets of RN\mathbb{R}^N the previous one introduced in the context of fractal strings, is illustrated by the Cantor graph (or devil's staircase) RFD, which is shown to be `subcritically fractal'.Comment: 90 pages (because of different style file), 5 figures, corrected typos, updated reference

    Renormalized Volume

    Full text link
    We develop a universal distributional calculus for regulated volumes of metrics that are singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulae for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulae. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.Comment: 31 pages, LaTeX, 5 figures, anomaly formula generalized to any bulk geometry, improved discussion of hypersurfaces with boundar
    corecore