17,373 research outputs found

    On Sampling Strategies for Neural Network-based Collaborative Filtering

    Full text link
    Recent advances in neural networks have inspired people to design hybrid recommendation algorithms that can incorporate both (1) user-item interaction information and (2) content information including image, audio, and text. Despite their promising results, neural network-based recommendation algorithms pose extensive computational costs, making it challenging to scale and improve upon. In this paper, we propose a general neural network-based recommendation framework, which subsumes several existing state-of-the-art recommendation algorithms, and address the efficiency issue by investigating sampling strategies in the stochastic gradient descent training for the framework. We tackle this issue by first establishing a connection between the loss functions and the user-item interaction bipartite graph, where the loss function terms are defined on links while major computation burdens are located at nodes. We call this type of loss functions "graph-based" loss functions, for which varied mini-batch sampling strategies can have different computational costs. Based on the insight, three novel sampling strategies are proposed, which can significantly improve the training efficiency of the proposed framework (up to ×30\times 30 times speedup in our experiments), as well as improving the recommendation performance. Theoretical analysis is also provided for both the computational cost and the convergence. We believe the study of sampling strategies have further implications on general graph-based loss functions, and would also enable more research under the neural network-based recommendation framework.Comment: This is a longer version (with supplementary attached) of the KDD'17 pape

    Efficient posterior sampling for high-dimensional imbalanced logistic regression

    Full text link
    High-dimensional data are routinely collected in many areas. We are particularly interested in Bayesian classification models in which one or more variables are imbalanced. Current Markov chain Monte Carlo algorithms for posterior computation are inefficient as nn and/or pp increase due to worsening time per step and mixing rates. One strategy is to use a gradient-based sampler to improve mixing while using data sub-samples to reduce per-step computational complexity. However, usual sub-sampling breaks down when applied to imbalanced data. Instead, we generalize piece-wise deterministic Markov chain Monte Carlo algorithms to include importance-weighted and mini-batch sub-sampling. These approaches maintain the correct stationary distribution with arbitrarily small sub-samples, and substantially outperform current competitors. We provide theoretical support and illustrate gains in simulated and real data applications.Comment: 4 figure

    Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability

    Get PDF
    In this paper a combination of neuro-fuzzy classifiers for improved classification performance and reliability is considered. A general fuzzy min-max (GFMM) classifier with agglomerative learning algorithm is used as a main building block. An alternative approach to combining individual classifier decisions involving the combination at the classifier model level is proposed. The resulting classifier complexity and transparency is comparable with classifiers generated during a single crossvalidation procedure while the improved classification performance and reduced variance is comparable to the ensemble of classifiers with combined (averaged/voted) decisions. We also illustrate how combining at the model level can be used for speeding up the training of GFMM classifiers for large data sets

    Density Preserving Sampling: Robust and Efficient Alternative to Cross-validation for Error Estimation

    Get PDF
    Estimation of the generalization ability of a classi- fication or regression model is an important issue, as it indicates the expected performance on previously unseen data and is also used for model selection. Currently used generalization error estimation procedures, such as cross-validation (CV) or bootstrap, are stochastic and, thus, require multiple repetitions in order to produce reliable results, which can be computationally expensive, if not prohibitive. The correntropy-inspired density- preserving sampling (DPS) procedure proposed in this paper eliminates the need for repeating the error estimation procedure by dividing the available data into subsets that are guaranteed to be representative of the input dataset. This allows the production of low-variance error estimates with an accuracy comparable to 10 times repeated CV at a fraction of the computations required by CV. This method can also be used for model ranking and selection. This paper derives the DPS procedure and investigates its usability and performance using a set of public benchmark datasets and standard classifier

    Rapid Sampling for Visualizations with Ordering Guarantees

    Get PDF
    Visualizations are frequently used as a means to understand trends and gather insights from datasets, but often take a long time to generate. In this paper, we focus on the problem of rapidly generating approximate visualizations while preserving crucial visual proper- ties of interest to analysts. Our primary focus will be on sampling algorithms that preserve the visual property of ordering; our techniques will also apply to some other visual properties. For instance, our algorithms can be used to generate an approximate visualization of a bar chart very rapidly, where the comparisons between any two bars are correct. We formally show that our sampling algorithms are generally applicable and provably optimal in theory, in that they do not take more samples than necessary to generate the visualizations with ordering guarantees. They also work well in practice, correctly ordering output groups while taking orders of magnitude fewer samples and much less time than conventional sampling schemes.Comment: Tech Report. 17 pages. Condensed version to appear in VLDB Vol. 8 No.

    Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera

    Get PDF
    This chapter addresses survey methodology and questionnaire design for the collection of data pertaining to estimation of honey bee colony loss rates and identification of risk factors for colony loss. Sources of error in surveys are described. Advantages and disadvantages of different random and non-random sampling strategies and different modes of data collection are presented to enable the researcher to make an informed choice. We discuss survey and questionnaire methodology in some detail, for the purpose of raising awareness of issues to be considered during the survey design stage in order to minimise error and bias in the results. Aspects of survey design are illustrated using surveys in Scotland. Part of a standardized questionnaire is given as a further example, developed by the COLOSS working group for Monitoring and Diagnosis. Approaches to data analysis are described, focussing on estimation of loss rates. Dutch monitoring data from 2012 were used for an example of a statistical analysis with the public domain R software. We demonstrate the estimation of the overall proportion of losses and corresponding confidence interval using a quasi-binomial model to account for extra-binomial variation. We also illustrate generalized linear model fitting when incorporating a single risk factor, and derivation of relevant confidence intervals

    LASAGNE: Locality And Structure Aware Graph Node Embedding

    Full text link
    In this work we propose Lasagne, a methodology to learn locality and structure aware graph node embeddings in an unsupervised way. In particular, we show that the performance of existing random-walk based approaches depends strongly on the structural properties of the graph, e.g., the size of the graph, whether the graph has a flat or upward-sloping Network Community Profile (NCP), whether the graph is expander-like, whether the classes of interest are more k-core-like or more peripheral, etc. For larger graphs with flat NCPs that are strongly expander-like, existing methods lead to random walks that expand rapidly, touching many dissimilar nodes, thereby leading to lower-quality vector representations that are less useful for downstream tasks. Rather than relying on global random walks or neighbors within fixed hop distances, Lasagne exploits strongly local Approximate Personalized PageRank stationary distributions to more precisely engineer local information into node embeddings. This leads, in particular, to more meaningful and more useful vector representations of nodes in poorly-structured graphs. We show that Lasagne leads to significant improvement in downstream multi-label classification for larger graphs with flat NCPs, that it is comparable for smaller graphs with upward-sloping NCPs, and that is comparable to existing methods for link prediction tasks

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads
    corecore