1,014 research outputs found

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Evaluating Emergency Response Solutions for Sustainable Community Development by Using Fuzzy Multi-Criteria Group Decision Making Approaches: IVDHF-TOPSIS and IVDHF-VIKOR

    Get PDF
    Emergency management is vital in implementing sustainable community development, for which community planning must include emergency response solutions to potential natural and manmade hazards. To help maintain such solution repository, we investigate effective fuzzy multi-criteria group decision making (FMCGDM) approaches for the complex problems of evaluating alternative emergency response solutions, where weights for decision makers and criteria are unknown due to problem complexity. We employ interval-valued dual hesitant fuzzy (IVDHF) set to address decision hesitancy more effectively. Based on IVDHF assessments, we develop a deviation maximizing model to compute criteria weights and another compatibility maximizing model to calculate weights for decision makers. Then, two ideal-solution-based FMCGDM approaches are proposed: (i) by introducing a synthesized IVDHF group decision matrix into TOPSIS, we develop an IVDHF-TOPSIS approach for fuzzy group settings; (ii) when emphasizing both maximum group utility and minimum individual regret, we extend VIKOR to develop an IVDHF-VIKOR approach, where the derived decision makers’ weights are utilized to obtain group decision matrix and the determined criteria weights are integrated to reflect the relative importance of distances from the compromised ideal solution. Compared with aggregation-operators-based approach, IVDHF-TOPSIS and IVDHF-VIKOR can alleviate information loss and computational complexity. Numerical examples have validated the effectiveness of the proposed approaches

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value

    Uninorm trust propagation and aggregation methods for group decision making in social network with four tuples information

    Get PDF
    The file attached to this record is the authors accepted version. The publisher's final version of record can be found by following the DOI link below.A novel social network based group decision making (SN-GDM) model with experts' weights not provided beforehand and with the following four tuple information: trust; distrust; hesitancy; and inconsistency, is introduced. The concepts of trust score (TS) and knowledge degree (KD) are de ned and combined into a trust order space. Then, a strict trust ranking order relation of trust function values (TFs) is built in which TS and KD play a similar role to the mean and the variance in Statistics. After the operational laws of TFs for uninorm operators are built, the uninorm propagation operator is investigated. It can propagate through a network both trust and distrust information simultaneously and therefore it prevents the loss of trust information in the propagating process. When an indirect trust relationship is built, the uninorm trust weighted average (UTWA) operator and the uninorm trust ordered weighted average (UTOWA) operator are de ned and used to aggregate individual trust relationship and to obtain their associated ranking order relation. Hence, the most trusted expert is distinguished from the group, and the weights of experts are determined in a reasonable way: the higher an expert is trusted the more importance value is assigned to the expert. Therefore, the novelty of the proposed SN-GDM is that it can use indirect trust relationship via trusted third partners (TTPs) as a reliable resource to determine experts' weights. Finally, the individual trust decision making matrices are aggregated into a collective one and the alternative with the highest trust order relation is selected as the best one

    Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review

    Get PDF
    Fifty years have gone by since the publication of the first paper on clustering based on fuzzy sets theory. In 1965, L.A. Zadeh had published “Fuzzy Sets” [335]. After only one year, the first effects of this seminal paper began to emerge, with the pioneering paper on clustering by Bellman, Kalaba, Zadeh [33], in which they proposed a prototypal of clustering algorithm based on the fuzzy sets theory

    Fuzzy Systems

    Get PDF
    This book presents some recent specialized works of theoretical study in the domain of fuzzy systems. Over eight sections and fifteen chapters, the volume addresses fuzzy systems concepts and promotes them in practical applications in the following thematic areas: fuzzy mathematics, decision making, clustering, adaptive neural fuzzy inference systems, control systems, process monitoring, green infrastructure, and medicine. The studies published in the book develop new theoretical concepts that improve the properties and performances of fuzzy systems. This book is a useful resource for specialists, engineers, professors, and students

    New Challenges in Neutrosophic Theory and Applications

    Get PDF
    Neutrosophic theory has representatives on all continents and, therefore, it can be said to be a universal theory. On the other hand, according to the three volumes of “The Encyclopedia of Neutrosophic Researchers” (2016, 2018, 2019), plus numerous others not yet included in Encyclopedia book series, about 1200 researchers from 73 countries have applied both the neutrosophic theory and method. Neutrosophic theory was founded by Professor Florentin Smarandache in 1998; it constitutes further generalization of fuzzy and intuitionistic fuzzy theories. The key distinction between the neutrosophic set/logic and other types of sets/logics lies in the introduction of the degree of indeterminacy/neutrality (I) as an independent component in the neutrosophic set. Thus, neutrosophic theory involves the degree of membership-truth (T), the degree of indeterminacy (I), and the degree of non-membership-falsehood (F). In recent years, the field of neutrosophic set, logic, measure, probability and statistics, precalculus and calculus, etc., and their applications in multiple fields have been extended and applied in various fields, such as communication, management, and information technology. We believe that this book serves as useful guidance for learning about the current progress in neutrosophic theories. In total, 22 studies have been presented and reflect the call of the thematic vision. The contents of each study included in the volume are briefly described as follows. The first contribution, authored by Wadei Al-Omeri and Saeid Jafari, addresses the concept of generalized neutrosophic pre-closed sets and generalized neutrosophic pre-open sets in neutrosophic topological spaces. In the article “Design of Fuzzy Sampling Plan Using the Birnbaum-Saunders Distribution”, the authors Muhammad Zahir Khan, Muhammad Farid Khan, Muhammad Aslam, and Abdur Razzaque Mughal discuss the use of probability distribution function of Birnbaum–Saunders distribution as a proportion of defective items and the acceptance probability in a fuzzy environment. Further, the authors Derya Bakbak, Vakkas Uluc¸ay, and Memet S¸ahin present the “Neutrosophic Soft Expert Multiset and Their Application to Multiple Criteria Decision Making” together with several operations defined for them and their important algebraic properties. In “Neutrosophic Multigroups and Applications”, Vakkas Uluc¸ay and Memet S¸ahin propose an algebraic structure on neutrosophic multisets called neutrosophic multigroups, deriving their basic properties and giving some applications to group theory. Changxing Fan, Jun Ye, Sheng Feng, En Fan, and Keli Hu introduce the “Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment” and test the effectiveness of their new methods. Another decision-making study upon an everyday life issue which empowered us to organize the key objective of the industry developing is given in “Neutrosophic Cubic Einstein Hybrid Geometric Aggregation Operators with Application in Prioritization Using Multiple Attribute Decision-Making Method” written by Khaleed Alhazaymeh, Muhammad Gulistan, Majid Khan, and Seifedine Kadry
    • …
    corecore