7,921 research outputs found

    Heavy traffic analysis of a polling model with retrials and glue periods

    Full text link
    We present a heavy traffic analysis of a single-server polling model, with the special features of retrials and glue periods. The combination of these features in a polling model typically occurs in certain optical networking models, and in models where customers have a reservation period just before their service period. Just before the server arrives at a station there is some deterministic glue period. Customers (both new arrivals and retrials) arriving at the station during this glue period will be served during the visit of the server. Customers arriving in any other period leave immediately and will retry after an exponentially distributed time. As this model defies a closed-form expression for the queue length distributions, our main focus is on their heavy-traffic asymptotics, both at embedded time points (beginnings of glue periods, visit periods and switch periods) and at arbitrary time points. We obtain closed-form expressions for the limiting scaled joint queue length distribution in heavy traffic and use these to accurately approximate the mean number of customers in the system under different loads.Comment: 23 pages, 2 figure

    Upstream traffic capacity of a WDM EPON under online GATE-driven scheduling

    Full text link
    Passive optical networks are increasingly used for access to the Internet and it is important to understand the performance of future long-reach, multi-channel variants. In this paper we discuss requirements on the dynamic bandwidth allocation (DBA) algorithm used to manage the upstream resource in a WDM EPON and propose a simple novel DBA algorithm that is considerably more efficient than classical approaches. We demonstrate that the algorithm emulates a multi-server polling system and derive capacity formulas that are valid for general traffic processes. We evaluate delay performance by simulation demonstrating the superiority of the proposed scheduler. The proposed scheduler offers considerable flexibility and is particularly efficient in long-reach access networks where propagation times are high

    Analysis and optimization of vacation and polling models with retrials

    Get PDF
    We study a vacation-type queueing model, and a single-server multi-queue polling model, with the special feature of retrials. Just before the server arrives at a station there is some deterministic glue period. Customers (both new arrivals and retrials) arriving at the station during this glue period will be served during the visit of the server. Customers arriving in any other period leave immediately and will retry after an exponentially distributed time. Our main focus is on queue length analysis, both at embedded time points (beginnings of glue periods, visit periods and switch- or vacation periods) and at arbitrary time points.Comment: Keywords: vacation queue, polling model, retrials Submitted for review to Performance evaluation journal, as an extended version of 'Vacation and polling models with retrials', by Onno Boxma and Jacques Resin

    Heavy-traffic analysis of k-limited polling systems

    Get PDF
    In this paper we study a two-queue polling model with zero switch-over times and kk-limited service (serve at most kik_i customers during one visit period to queue ii, i=1,2i=1,2) in each queue. The arrival processes at the two queues are Poisson, and the service times are exponentially distributed. By increasing the arrival intensities until one of the queues becomes critically loaded, we derive exact heavy-traffic limits for the joint queue-length distribution using a singular-perturbation technique. It turns out that the number of customers in the stable queue has the same distribution as the number of customers in a vacation system with Erlang-k2k_2 distributed vacations. The queue-length distribution of the critically loaded queue, after applying an appropriate scaling, is exponentially distributed. Finally, we show that the two queue-length processes are independent in heavy traffic
    • …
    corecore