9,185 research outputs found

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Towards Semantic Integration of Heterogeneous Sensor Data with Indigenous Knowledge for Drought Forecasting

    Full text link
    In the Internet of Things (IoT) domain, various heterogeneous ubiquitous devices would be able to connect and communicate with each other seamlessly, irrespective of the domain. Semantic representation of data through detailed standardized annotation has shown to improve the integration of the interconnected heterogeneous devices. However, the semantic representation of these heterogeneous data sources for environmental monitoring systems is not yet well supported. To achieve the maximum benefits of IoT for drought forecasting, a dedicated semantic middleware solution is required. This research proposes a middleware that semantically represents and integrates heterogeneous data sources with indigenous knowledge based on a unified ontology for an accurate IoT-based drought early warning system (DEWS).Comment: 5 pages, 3 figures, In Proceedings of the Doctoral Symposium of the 16th International Middleware Conference (Middleware Doct Symposium 2015), Ivan Beschastnikh and Wouter Joosen (Eds.). ACM, New York, NY, US

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    Landfill gas monitoring network - development of wireless sensor network platforms

    Get PDF
    A wireless sensor network has been developed for the application of landfill gas monitoring, specifically sensing methane, carbon dioxide and extraction pressure. This collaborative work with the Irish Environmental Protection Agency has been motivated by the need to reduce greenhouse gas emissions as well as aiming to improve landfill gas management and utilisation. This paper describes the preliminary findings of an ongoing trial deployment of multiple sensing platforms on an active landfill facility; data has been acquired for nine months to date. The platforms have operated successfully despite adverse on-site conditions, with validity demonstrated by reasonably strong correlation with independent on-site measurements. The increased temporal and spatial resolution provided by distributed sensor platforms is discussed with regard to improving landfill gas management practice

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201
    • …
    corecore