584 research outputs found

    Developing A Medium-Voltage Three-Phase Current Compensator Using Modular Switching Positions

    Get PDF
    The objective of this thesis is to present the context, application, theory, design, construction, and testing of a proposed solution to unbalanced current loading on three-phase four-wire systems. This solution, known as the Medium-Voltage Unbalanced Current Static Compensator or MV-UCSC, is designed to recirculate currents between the three phases of adistribution system. Through this redistribution of the currents negative- and zero-sequence current components are eliminated and a balanced load is seen upstream from the point of installation. The MV-UCSC as it operates in the distribution system is presented followed by its effect on traditional compensation equipment. The construction of the MV-UCSC as well as 13.8 kV simulations are then shown. Development of the switching positions required by the MVUCSC is then given followed by a variation on this switching position with the intent to reduce part count. Finally, the testing the 13.8 kV three-phase four-wire, neutral-point-clamped, elevenlevel, flying-capacitor-based MV-UCSC connected directly to the grid is presented

    Five-Level Flying Capacitor Converter used as a Static Compensator for Current Unbalances in Three-Phase Distribution Systems

    Get PDF
    This thesis presents and evaluates a solution for unbalanced current loading in three-phase distribution systems. The proposed solution uses the flying capacitor multilevel converter as its main topology for an application known as Unbalanced Current Static Compensator. The fundamental theory, controller design and prototype construction will be presented along with the experimental results. The Unbalanced Current Static Compensator main objective is the balancing of the up-stream currents from the installation point to eliminate the negative- and zero-sequence currents originated by unbalanced single-phase loads. Three separate single-phase flying capacitor converters are controlled independently using a d-q rotating reference frame algorithm to allow easier compensation of reactive power. Simulations of the system were developed in MATLAB/SIMULINK™ in order to validate the design parameters; then, testing of the UCSC prototype was performed to confirm the control algorithm functionality. Finally, experimental result are presented and analyzed

    Delta STATCOM with partially rated energy storage for intended provision of ancillary services

    Get PDF
    This thesis presents research on two distinct areas, where the work carried out in the first half highlights the challenges posed by the declining system inertia in the future power systems and the potential capability of the energy storage systems in bridging the gap, supporting a safe and reliable operation. A comparison of various energy storage technologies based on their specific energy, specific power, response time, life-cycle, efficiency, cost and further correlating these characteristics to the timescale requirements of frequency and RoCoF services showed that supercapacitors (SC) and Li-ion batteries present the most suitable candidates. Results of a network stability study showed that for a power system rated at 2940 MVA with a high RES contribution of 1688 MVA, equating to 57% of the energy mix, during a power imbalance of 200 MW, an ESS designed to provide emulated inertia response (EIR) in isolation required a power and energy rating of 39.54 MW and 0.0365 MWh respectively. Similarly, providing primary frequency response (PFR) on its own required a power and energy rating of 114.52 MW and 2.14 MWh respectively. ESS providing these services in isolation was not able to maintain all the frequency operating limits and similar results were also seen in the case of the recently introduced Dynamic Containment service. However, with the introduction of a combined response capability, a significantly improved performance, comparable to that of the synchronous generators was observed. In order to maintain the RoCoF and the statutory frequency limit of 0.5 Hz/s and ±0.5 Hz respectively, an ESS must be able to respond with a delay time of no more than 0.2 seconds and be able to ramp up to full response within 0.3 seconds (0.5 seconds from the start of contingency) for a frequency deviation of ±0.5 Hz. The second half of the thesis focused on investigating the current state-of-the-art power conversion system topologies, with the objective of identifying a suitable topology for interfacing ESSs to the grid at MV level. A delta-connected Modular Multilevel STATCOM with partially rated storage (PRS-STATCOM) is proposed, capable of providing both reactive and active power support. The purpose is to provide short-term energy storage enabled grid support services such as inertial and frequency response, either alongside or temporarily instead of standard STATCOM voltage support. The topology proposed here contains two types of sub-modules (SM) in each phase-leg: standard sub-modules (STD-SMs) and energy storage element sub-modules (ESE-SMs) with a DC-DC interface converter between the SM capacitor and the ESE. A control structure has been developed that allows energy transfer between the SM capacitor and the ESE, resulting in an active power exchange between the converter and the grid. A 3rd harmonic current injection into the converter waveforms was used to increase the amount of power that can be extracted from the ESE-SMs and so reduce the required ESE-SMs fraction in each phase-leg. Simulation results demonstrate that for three selected active power ratings, 1 pu, 2/3 pu, & 1/3 pu, the fraction of SMs that need to be converted to ESE-SMs are only 69%, 59% & 38%. Thus, the proposed topology is effective in adding real power capability to a STATCOM without a large increase in equipment cost. Furthermore, modifying the initially proposed topology with the use of Silicon Carbide (SiC) switching devices and interleaved DC-DC interface converter with inverse coupled inductors resulted in similar efficiencies when operated in STATCOM mode.Open Acces

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Series connection of power semiconductors for medium voltage applications

    Get PDF
    The series connection of power semiconductor devices allows the operation at voltage levels higher than the levels allowed by one single semiconductor. However, due to individual parameter differences of the series connected devices it is difficult to ensure a proper voltage balance between the series connected power devices and if any semiconductor exceeds its maximum blocking voltage it will fail. Because of its gate controllability and its low gate energy requirements, the IGBT is the preferred choice when high number of switching devices must be connected in series. In this research work an IGBT gate driver has been developed which will control the behaviour of the IGBT during the switching process. In consequence, this gate driver should ensure a proper voltage balance between the series connected IGBT devices. Basically, this PhD research work deals with the analysis and the modelling of the behaviour of the IGBT / Diode, proposes an active gate control and shows its validity for the series connection of IGBT / Diode devices. Finally, voltage source converter topologies are briefly compared for reactive power compensation applications at Medium Voltage utility grids. The required blocking voltage capacity is achieved by means of the series connection of power semiconductor devices.La conexión en serie de semiconductores de potencia permite trabajar a tensiones de trabajo superiores a las que podría soportar un único semiconductor. Sin embargo, debido a diferencias en las características de los propios semiconductores es difícil garantizar el equilibrado adecuado de las tensiones de trabajo entre los distintos semiconductores conectados en serie. Si algún semiconductor supera su máxima tensión de trabajo este fallará. Debido a su controlabilidad y bajo requerimiento energético por puerta el IGBT es la opción preferida cuando se requiere la conexión en serie de gran cantidad de semiconductores. En este trabajo de investigación se ha desarrollado un driver para IGBT que permita el control del proceso de conmutación del IGBT y garantice el equilibrado de las tensiones entre los IGBTs conectados en serie. Básicamente, en este trabajo de investigación se presenta el análisis y modelado del comportamiento del IGBT/Diodo, el control activo empleado para controlar el proceso de conmutación del IGBT y su validez para la conextión en serie. Finalmente, se presenta una pequeña comparación de convertidores de fuente de tensión para aplicaciones de compensación de energía reactiva conectados directamente a redes de Media Tensión. La capacidad de bloqueo requerida se obtiene mediante la conexión en serie de semiconductores de potencia.Potentzi erdi eroaleen serie elkarketak, erdi eroale batek jasan dezakeena baino tentsio maila altuagoan lan egitea ahalbideratzen du. Hala ere, erdi eroaleen arteko ezaugarri ezberditasunak direla eta, zaila egiten da tentsio banaketa egokia zihurtatzea. Erdi eroaleetariko batek bere gehienezko tentsio maila gainditzen badu honek huts egingo du. Erdi eroale asko seriean elkartu behar direnean IGBT-a izaten da aukerarik hobetsiena bere kontrolagarritasuna eta behar duen ateko energia maila baxua dela eta. Ikerketa lan honetan IGBT baten ateko “driver”-a garatu da. Honek IGBT-aren konmutazio prozesua kontrolatu behar du eta aldi berean, seriean elkarturiko IGBT-en artean, tentsio banaketa egokia lortu. Funtsean, ikerketa lan honetan IGBT eta Diodo-aren analisia eta modelatua erakusten dira. Modu berean “driver”-ean erabilitako kontrola eta bere baliozkotasuna IGBT/Diodo-en serie elkarketarako erakusten dira. Azkenik, Tentsio Ertaineko sarera zuzenean konektaturiko Tentsio Iturri Bihurgailuen arteko konparaketa bat egin da. Sareko tentsio maila altua dela eta erdi eroaleen serie elkarketa derrigorrezkoa da

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    Discussion on Electric Power Supply Systems for All Electric Aircraft

    Get PDF
    The electric power supply system is one of the most important research areas within sustainable and energy-efcient aviation for more- and especially all electric aircraft. This paper discusses the history in electrication, current trends with a broad overview of research activities, state of the art of electrication and an initial proposal for a short-range aircraft. It gives an overviewof the mission prole, electrical sources, approaches for the electrical distribution system and the required electrical loads. Current research aspects and questions are discussed, including voltage levels, semiconductor technology, topologies and reliability. Because of the importance for safety possible circuit breakers for the proposed concept are also presented and compared, leading to a initial proposal. Additionally, a very broad review of literature and a state of the art discussion of the wiring harness is given, showing that this topic comes with a high number of aspects and requirements. Finally, the conclusion sums up the most important results and gives an outlook on important future research topics

    High Power, Medium Frequency, and Medium Voltage Transformer Design and Implementation

    Get PDF
    Many industrial applications that require high-power and high-voltage DC-DC conversion are emerging. Space-borne and off-shore wind farms, fleet fast electric vehicle charging stations, large data centers, and smart distribution systems are among the applications. Solid State Transformer (SST) is a promising concept for addressing these emerging applications. It replaces the traditional Low Frequency Transformer (LFT) while offering many advanced features such as VAR compensation, voltage regulation, fault isolation, and DC connectivity. Many technical challenges related to high voltage stress, efficiency, reliability, protection, and insulation must be addressed before the technology is ready for commercial deployment. Among the major challenges in the construction of SSTs are the strategies for connecting to Medium Voltage (MV) level. This issue has primarily been addressed by synthesizing multicellular SST concepts based on modules rated for a fraction of the total MV side voltage and connecting these modules in series at the input side. Silicon Carbide (SiC) semiconductor development enables the fabrication of power semiconductor devices with high blocking voltage capabilities while achieving superior switching and conduction performances. When compared to modular lower voltage converters, these higher voltage semiconductors enable the construction of single-cell SSTs by avoiding the series connection of several modules, resulting in simple, reliable, lighter mass, more power dense, higher efficiency, and cost effective converter structures. This dissertation proposes a solution to this major issue. The proposed work focuses on the development of a dual active bridge with high power, medium voltage, and medium frequency control. This architecture addresses the shortcomings of existing modular systems by providing a more power dense, cost-effective, and efficient solution. For the first time, this topology is investigated on a 700kW system connected to a 13kVdc input to generate 7.2kVdc at the output. The use of 10kV SiC modules and gate drivers in an active neutral point clamped to two level dual active bridge converter is investigated. A special emphasis will be placed on a comprehensive transformer design that employs a multi-physics approach that addresses all magnetic, electrical, insulation, and thermal aspects. The transformer is designed and tested to ensure the system’s viability

    Implementation of SiC Power Electronics for Green Energy Based Electrification of Transportation

    Get PDF
    Increase in greenhouse gas emission poses a threat to the quality of air thus threatening the future of living beings on earth. A large part of the emission is produced by transport vehicles. Electric vehicles (EVs) are a great solution to this threat. They will completely replace the high usage of hydrocarbons in the transport sector. Energy efficiency and reduced local pollution can also be expected with full implementation of electrification of transportation. However, the current grid is not prepared to take the power load of EV charging if it were to happen readily. Moreover, critics are doubtful about the long-term sustainability of EVs in terms of different supply chain issues. The first step for tackling this problem from a research perspective was to do a thorough review of the details of charging in modern day grid. The downsides and lack of futuristic vision. Findings showed that implementing end to end DC based on green energy aided by SiC power electronics. To prove the findings analysis and modelling was done for SiC based charging network. A similar approach was implemented in EV powertrain development. The implementation of SiC power electronics in charging network showed lesser losses, higher thermal conductivity, lesser charging time. The effect on long term battery health and additional circuit was also observed. The cost of production can be reduced by volume manufacturing that has been discussed. In powertrain analysis and simulation the loss and heat reduction one shown on a component-by-component basis. Therefore, this research proposes a Silicon Carbide based end to end DC infrastructure based completely on solar and wind power. The pollution will further be reduced, and energy demands will be met
    corecore