2,166 research outputs found

    Mellin Transform Based Performance Analysis of Fast Frequency Hopping Using Product Combining

    No full text
    Abstract—In this contribution, we analyze the bit error rate (BER) performance of fast frequency hopping (FFH) assisted M-ary frequency shift keying (MFSK) using product combining. Product combining constitutes an efficient yet low-complexity scheme that may be employed in FFH-MFSK receiver to combat the detrimental effects of interference or jamming. We propose a novel approach to the analysis of this receiver system, which is based on the Mellin transform. Using this approach, the probability density function (PDF) of the product combiner output is expressed in a closed form. Based on the resultant PDF, the BER of the FFH-MFSK product combining receiver operating in Rayleigh fading channel is evaluated analytically. It is shown that the Mellin transform simplifies the analysis of the product combining receiver

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstract—In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Terms—Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Digital communications over fading channels

    Get PDF
    In this report, the probabilities of bit error for the most commonly used digital modulation techniques are analyzed. Analytic solutions are developed for the probability of bit error when the signal is affected by the most commonly encountered impairment to system performance for a wireless channel, the transmission of the signal over a fading channel. In this report, the effect of a slow, flat Ricean fading channel on communications systems performance is examined. Since channel fading significantly degrades the performance of a communication system, the performance of digital communication systems that also use forward error correction channel coding is analyzed for hard decision decoding and, where appropriate, for soft decision decoding. Diversity, another technique to mitigate the effect of fading channels on digital communication systems performance, is also discussed. Also included is a discussion of the effect of narrowband noise interference, both continuous and pulsed, on digital communication systems. We then discuss the analysis of the probability of bit error for the combination of error correction coding and diversity. Following this, we briefly discuss spread spectrum systems. Next, we examine the link budget analysis and various models for channel loss. Finally, we examine in detail the second generation digital wireless standard Global System for Mobile (GSM).Approved for public release; distribution is unlimited
    • 

    corecore