1,219 research outputs found

    Integration of remote sensing and GIS in studying vegetation trends and conditions in the gum arabic belt in North Kordofan, Sudan

    Get PDF
    The gum arabic belt in Sudan plays a significant role in environmental, social and economical aspects. The belt has suffered from deforestation and degradation due to natural hazards and human activities. This research was conducted in North Kordofan State, which is affected by modifications in conditions and composition of vegetation cover trends in the gum arabic belt as in the rest of the Sahelian Sudan zone. The application of remote sensing, geographical information system and satellites imageries with multi-temporal and spatial analysis of land use land cover provides the land managers with current and improved data for the purposes of effective management of natural resources in the gum arabic belt. This research investigated the possibility of identification, monitoring and mapping of the land use land cover changes and dynamics in the gum arabic belt during the last 35 years. Also a newly approach of object-based classification was applied for image classification. Additionally, the study elaborated the integration of conventional forest inventory with satellite imagery for Acacia senegal stands. The study used imageries from different satellites (Landsat and ASTER) and multi-temporal dates (MSS 1972, TM 1985, ETM+ 1999 and ASTER 2007) acquired in dry season (November). The imageries were geo-referenced and radiometrically corrected by using ENVI-FLAASH software. Image classification (pixel-based and object-based), post-classification change detection, 2x2 and 3x3 pixel windows and accuracy assessment were applied. A total of 47 field samples were inventoried for Acacia senegal tree’s variables in Elhemmaria forest. Three areas were selected and distributed along the gum arabic belt. Regression method analysis was applied to study the relationship between forest attributes and the ASTER imagery. Application of multi-temporal remote sensing data in gum arabic belt demonstrated successfully the identification and mapping of land use land cover into five main classes. Also NDVI categorisation provided a consistent method for land use land cover stratification and mapping. Forest dominated by Acacia senegal class was separated covering an area of 21% and 24% in the year 2007 for areas A and B, respectively. The land use land cover structure in the gum arabic belt has obvious changes and reciprocal conversions between the classes indicating the trends and conditions caused by the human interventions as well as ecological impacts on Acacia senegal trees. The study revealed a drastic loss of Acacia senegal cover by 25% during the period of 1972 to 2007.The results of the study revealed to a significant correlation (p ≤ 0.05) between the ASTER bands (VNIR) and vegetation indices (NDVI, SAVI, RVI) with stand density, volume, crown area and basal area of Acacia senegal trees. The derived 2x2 and 3x3 pixel windows methods successfully extracted the spectral reflectance of Acacia senegal trees from ASTER imagery. Four equations were developed and could be widely used and applied for monitoring the stand density, volume, basal area and crown area of Acacia senegal trees in the gum arabic belt considering the similarity between the selected areas. The pixel-based approach performed slightly better than the object-based approach in land use land cover classification in the gum arabic belt. The study come out with some valuable recommendations and comments which could contribute positively in using remotely sensed imagery and GIS techniques to explore management tools of Acacia senegal stands in order to maintain the tree component in the farming and the land use systems in the gum arabic belt

    EVALUATING THE USE OF UNMANNED AERIAL SYSTEMS (UAS) FOR COLLECTING THEMATIC MAPPING ACCURACY ASSESSMENT REFERENCE DATA IN NEW ENGLAND FOREST COMMUNITIES

    Get PDF
    To overcome the main drivers of global environmental change, such as land use and land cover change, evolving technologies must be adopted to rapidly and accurately capture, process, analyze, and display a multitude of high resolution spatial variables. Remote sensing technologies continue to advance at an ever-increasing rate to meet end-user needs, now in the form of unmanned aerial systems (UAS or drones). UAS have bridged the gap left by satellite imagery, aerial photography, and even ground measurements in data collection potential for all matters of information. This new platform has already been deployed in many data collection scenarios, being modified to the needs of the end user. With modern remote sensing optics and computer technologies, thematic mapping of complex communities presents a wide variety of classification methods, including both pixel-based and object-based classifiers. One essential component of using the derived thematic data as decision-making information is first validating its accuracy. The process of assessing thematic accuracy over the years has come a long way, with site-specific multivariate analysis error matrices now being the premier evaluation mechanism. In order to perform any evaluation of certainty, or correctness, a comparison to a known standard must be made, this being reference data. Methods for reference data collection in both pixel-based and object-based classification assessments are indeterminate, but can all become quite limiting due to their immense costs. This research project set out to evaluate if the new, low cost UAS platform could collect reference data for use in thematic mapping accuracy assessments. We also evaluated several collection process methods for their efficiency and effectiveness, as the use of UAS is still relatively unknown in its ability to acquire data in densely vegetated landscapes. Collected imagery was calibrated and stitched together by way of structure-from-motion (SfM), attempting calibration and configuration in both Agisoft PhotoScan and Pix4DMapper Pro to form orthomosaic models. Our results showed that flying heights below 100m above the focus area surface, while acquiring ultra-high-detailed imagery, only resulted in a maximum of 62% image calibration when generating spatial models. Flying at our legal maximum flying height of 120m above the surface (just below 400ft), we averaged 97.49% image calibration, and a gsd of 3.23cm/pixel over the 398 ha. sampled. Using a classification scheme based on judging the percent coniferous composition of the sampled units, our results during optimal UAS sampling showed a maximum of 71.43% overall accuracy and 85.71% overall accuracy, respectively, for pixel-based and object-based thematic accuracy assessments, in direct comparison to ground sampled locations. Other randomly sampled procedures for each approach achieved slightly less agreement with ground data classifications. Despite the minor drawbacks brought about by the complexity of the environment, the classification results demonstrated OBIA acquiring exceptional accuracy in reference data collection. Future expansion of the project across more study areas, and larger forest landscapes could uncover increased agreement and efficiency of the UAS platform

    Clearing the Clouds: Extracting 3D information from amongst the noise

    Get PDF
    Advancements permitting the rapid extraction of 3D point clouds from a variety of imaging modalities across the global landscape have provided a vast collection of high fidelity digital surface models. This has created a situation with unprecedented overabundance of 3D observations which greatly outstrips our current capacity to manage and infer actionable information. While years of research have removed some of the manual analysis burden for many tasks, human analysis is still a cornerstone of 3D scene exploitation. This is especially true for complex tasks which necessitate comprehension of scale, texture and contextual learning. In order to ameliorate the interpretation burden and enable scientific discovery from this volume of data, new processing paradigms are necessary to keep pace. With this context, this dissertation advances fundamental and applied research in 3D point cloud data pre-processing and deep learning from a variety of platforms. We show that the representation of 3D point data is often not ideal and sacrifices fidelity, context or scalability. First ground scanning terrestrial LIght Detection And Ranging (LiDAR) models are shown to have an inherent statistical bias, and present a state of the art method for correcting this, while preserving data fidelity and maintaining semantic structure. This technique is assessed in the dense canopy of Micronesia, with our technique being the best at retaining high levels of detail under extreme down-sampling (\u3c 1%). Airborne systems are then explored with a method which is presented to pre-process data to preserve a global contrast and semantic content in deep learners. This approach is validated with a building footprint detection task from airborne imagery captured in Eastern TN from the 3D Elevation Program (3DEP), our approach was found to achieve significant accuracy improvements over traditional techniques. Finally, topography data spanning the globe is used to assess past and previous global land cover change. Utilizing Shuttle Radar Topography Mission (SRTM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, paired with the airborne preprocessing technique described previously, a model for predicting land-cover change from topography observations is described. The culmination of these efforts have the potential to enhance the capabilities of automated 3D geospatial processing, substantially lightening the burden of analysts, with implications improving our responses to global security, disaster response, climate change, structural design and extraplanetary exploration

    ESTIMATION AND MODELING OF FOREST ATTRIBUTES ACROSS LARGE SPATIAL SCALES USING BIOMEBGC, HIGH-RESOLUTION IMAGERY, LIDAR DATA, AND INVENTORY DATA

    Get PDF
    The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest\u27s condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling

    Mapping and Monitoring Forest Cover

    Get PDF
    This book is a compilation of six papers that provide some valuable information about mapping and monitoring forest cover using remotely sensed imagery. Examples include mapping large areas of forest, evaluating forest change over time, combining remotely sensed imagery with ground inventory information, and mapping forest characteristics from very high spatial resolution data. Together, these results demonstrate effective techniques for effectively learning more about our very important forest resources

    Investigating the potential for detecting Oak Decline using Unmanned Aerial Vehicle (UAV) Remote Sensing

    Get PDF
    This PhD project develops methods for the assessment of forest condition utilising modern remote sensing technologies, in particular optical imagery from unmanned aerial systems and with Structure from Motion photogrammetry. The research focuses on health threats to the UK’s native oak trees, specifically, Chronic Oak Decline (COD) and Acute Oak Decline (AOD). The data requirements and methods to identify these complex diseases are investigatedusing RGB and multispectral imagery with very high spatial resolution, as well as crown textural information. These image data are produced photogrammetrically from multitemporal unmanned aerial vehicle (UAV) flights, collected during different seasons to assess the influence of phenology on the ability to detect oak decline. Particular attention is given to the identification of declined oak health within the context of semi-natural forests and heterogenous stands. Semi-natural forest environments pose challenges regarding naturally occurring variability. The studies investigate the potential and practical implications of UAV remote sensing approaches for detection of oak decline under these conditions. COD is studied at Speculation Cannop, a section in the Forest of Dean, dominated by 200-year-old oaks, where decline symptoms have been present for the last decade. Monks Wood, a semi-natural woodland in Cambridgeshire, is the study site for AOD, where trees exhibit active decline symptoms. Field surveys at these sites are designed and carried out to produce highly-accurate differential GNSS positional information of symptomatic and control oak trees. This allows the UAV data to be related to COD or AOD symptoms and the validation of model predictions. Random Forest modelling is used to determine the explanatory value of remote sensing-derived metrics to distinguish trees affected by COD or AOD from control trees. Spectral and textural variables are extracted from the remote sensing data using an object-based approach, adopting circular plots around crown centres at individual tree level. Furthermore, acquired UAV imagery is applied to generate a species distribution map, improving on the number of detectable species and spatial resolution from a previous classification using multispectral data from a piloted aircraft. In the production of the map, parameters relevant for classification accuracy, and identification of oak in particular, are assessed. The effect of plot size, sample size and data combinations are studied. With optimised parameters for species classification, the updated species map is subsequently employed to perform a wall-to-wall prediction of individual oak tree condition, evaluating the potential of a full inventory detection of declined health. UAV-acquired data showed potential for discrimination of control trees and declined trees, in the case of COD and AOD. The greatest potential for detecting declined oak condition was demonstrated with narrowband multispectral imagery. Broadband RGB imagery was determined to be unsuitable for a robust distinction between declined and control trees. The greatest explanatory power was found in remotely-sensed spectra related to photosynthetic activity, indicated by the high feature importance of nearinfrared spectra and the vegetation indices NDRE and NDVI. High feature importance was also produced by texture metrics, that describe structural variations within the crown. The findings indicate that the remotely sensed explanatory variables hold significant information regarding changes in leaf chemistry and crown morphology that relate to chlorosis, defoliation and dieback occurring in the course of the decline. In the case of COD, a distinction of symptomatic from control trees was achieved with 75 % accuracy. Models developed for AOD detection yielded AUC scores up to 0.98,when validated on independent sample data. Classification of oak presence was achieved with a User’s accuracy of 97 % and the produced species map generated 95 % overall accuracy across the eight species within the study area in the north-east of Monks Wood. Despite these encouraging results, it was shown that the generalisation of models is unfeasible at this stage and many challenges remain. A wall-to-wall prediction of decline status confirmed the inability to generalise, yielding unrealistic results, with a high number of declined trees predicted. Identified weaknesses of the developed models indicate complexity related to the natural variability of heterogenous forests combined with the diverse symptoms of oak decline. Specific to the presented studies, additional limitations were attributed to limited ground truth, consequent overfitting,the binary classification of oak health status and uncertainty in UAV-acquired reflectance values. Suggestions for future work are given and involve the extension of field sampling with a non-binary dependent variable to reflect the severity of oak decline induced stress. Further technical research on the quality and reliability of UAV remote sensing data is also required

    New Approaches to Mapping Forest Conditions and Landscape Change from Moderate Resolution Remote Sensing Data across the Species-Rich and Structurally Diverse Atlantic Northern Forest of Northeastern North America

    Get PDF
    The sustainable management of forest landscapes requires an understanding of the functional relationships between management practices, changes in landscape conditions, and ecological response. This presents a substantial need of spatial information in support of both applied research and adaptive management. Satellite remote sensing has the potential to address much of this need, but forest conditions and patterns of change remain difficult to synthesize over large areas and long time periods. Compounding this problem is error in forest attribute maps and consequent uncertainty in subsequent analyses. The research described in this document is directed at these long-standing problems. Chapter 1 demonstrates a generalizable approach to the characterization of predominant patterns of forest landscape change. Within a ~1.5 Mha northwest Maine study area, a time series of satellite-derived forest harvest maps (1973-2010) served as the basis grouping landscape units according to time series of cumulative harvest area. Different groups reflected different harvest histories, which were linked to changes in landscape composition and configuration through time series of selected landscape metrics. Time series data resolved differences in landscape change attributable to passage of the Maine Forest Practices Act, a major change in forest policy. Our approach should be of value in supporting empirical landscape research. Perhaps the single most important source of uncertainty in the characterization of landscape conditions is over- or under-representation of class prevalence caused by prediction bias. Systematic error is similarly impactful in maps of continuous forest attributes, where regression dilution or attenuation bias causes the overestimation of low values and underestimation of high values. In both cases, patterns of error tend to produce more homogeneous characterizations of landscape conditions. Chapters 2 and 3 present a machine learning method designed to simultaneously reduce systematic and total error in continuous and categorical maps, respectively. By training support vector machines with a multi-objective genetic algorithm, attenuation bias was substantially reduced in regression models of tree species relative abundance (chapter 2), and prediction bias was effectively removed from classification models predicting tree species occurrence and forest disturbance (chapter 3). This approach is generalizable to other prediction problems, other regions, or other geospatial disciplines

    Assessing processes of long-term land cover change and modelling their effects on tropical forest biodiversity patterns – a remote sensing and GIS-based approach for three landscapes in East Africa: Assessing processes of long-term land cover change and modelling their effects on tropical forest biodiversity patterns – a remote sensing and GIS-based approach for three landscapes in East Africa

    Get PDF
    The work describes the processing and analysis of remote sensing time series data for a comparative assessment of changes in different tropical rainforest areas in East Africa. In order to assess the effects of the derived changes in land cover and forest fragmentation, the study made use of spatially explicit modelling approaches within a geographical information system (GIS) to extrapolate sets of biological field findings in space and time. The analysis and modelling results were visualised aiming to consider the requirements of three different user groups. In order to evaluate measures of forest conservation and to derive recommendations for an effective forest management, quantitative landscape-scale assessments of land cover changes and their influence on forest biodiversity patterns are needed. However, few remote sensing studies have accounted for all of the following aspects at the same time: (i) a dense temporal sequence of land cover change/forest fragmentation information, (ii) the coverage of several decades, (iii) the distinction between multiple forest formations and (iv) direct comparisons of different case studies. In regards to linkages of remote sensing with biological field data, no attempts are known that use time series data for quantitative statements of long-term landscape-scale biodiversity changes. The work studies three officially protected forest areas in Eastern Africa: the Kakamega-Nandi forests in western Kenya (focus area) and Mabira Forest in south-eastern Uganda as well as Budongo Forest in western Uganda (for comparison purposes). Landsat imagery of in total eight or seven dates in regular intervals from 1972/73 to 2003 was used. Making use of supervised multispectral image classification procedures, in total, 12 land cover classes (six forest formations) were distinguished for the Kakamega-Nandi forests and for Budongo Forest while for Mabira Forest ten classes could be realised. An accuracy assessment via error matrices revealed overall classification accuracies between 81% and 85%. The Kakamega-Nandi forests show a continuous decrease between 1972/73 and 2001 of 31%, Mabira Forest experienced an abrupt loss of 24% in the late 1970s/early 1980s, while Budongo Forest shows a relatively stable forest cover extent. An assessment of the spatial patterns of forest losses revealed congruence with areas of high population density while a spatially explicit forest fragmentation index indicates a strong correlation of forest fragmentation with forest management regime and forest accessibility by roads. For the Kenyan focus area, three sets of biological field abundance data on keystone species/groups were used for a quantitative assessment of the influence of long-term changes in tropical forests on landscape-scale biodiversity patterns. For this purpose, the time series was extended with another three land cover data sets derived from aerial photography (1965/67, 1948/(52)) and old topographic maps (1912/13). To predict the spatio-temporal distribution of the army ant Dorylus wilverthi and of ant-following birds, GIS operators (i.e. focal and local functions) and statistical tests (i.e. OLS or SAR regression models) were combined into a spatial modelling procedure. Abundance data on three guilds of birds differing in forest dependency were directly extrapolated to five forest cover classes as distinguished in the time series. The results predict declines in species abundances of 56% for D. wilverthi, of 58% for ant-following birds and an overall loss of 47% for the bird habitat guilds, which in all three cases greatly exceed the rate of forest loss (31%). Additional extrapolations on scenarios of deforestation and reforestation confirmed the negative ecological consequences of splitting-up contiguous forest areas but also showed the potential of mixed indigenous forest plantings. The visualisation of the analysis and modelling results produced a mixture of different outcomes. Map series and a matrix of maps both showing species distributions aim to address scientists and decision makers. The results of the land cover change analysis were synthesised in a map of land cover development types for each study area, respectively. These maps are designed mainly for scientists. Additional maps of change, limited to a single class of forest cover and to three dates were generated to ensure an easy-to-grasp communication of the major forest changes to decision makers. Additionally, an easy-to-handle visualisation tool to be used by scientists, decision makers and local people was developed. For the future, an extension of this study towards a more complete assessment including more species/groups and also ecosystem functions and services would be desirable. Combining a framework for land cover simulation with a framework for running empirical extrapolation models in an automated manner could ideally result in a GIS-based, integrated forest ecosystem assessment tool to be used as regional spatial decision support system.Die Arbeit beschreibt die Prozessierung und Analyse von Fernerkundungs-Zeitreihendaten für eine vergleichende Abschätzung von Veränderungen verschiedener tropischer Waldökosysteme Ostafrikas. Um Effekte der Veränderungen bzgl. Landbedeckung und Waldfragmentierung auf Biodiversitätsmuster abzuschätzen, wurden verschiedene räumlich explizite Modellierungssätze innerhalb eines geographischen Informationssystems (GIS) zur räumlichen und zeitlichen Extrapolation biologischer Felderhebungsdaten benutzt. Die Visualisierung der Analyse- und Modellierungsergebnisse erfolgte unter Berücksichtigung der Bedürfnisse von drei verschiedenen Nutzergruppen. Um Waldschutzmaßnahmen zu evaluieren und Empfehlungen für ein effektives Waldmanagement abzuleiten, sind quantitative Abschätzungen von Landbedeckungsveränderungen sowie von deren Einfluss auf tropische Waldbiodiversitätsmuster nötig. Wenige fernerkundungsbasierte Studien haben jedoch bislang alle der folgenden Faktoren berücksichtigt: (i) Informationen zu Veränderungen von Landbedeckung und Waldfragmentierung in dichter zeitlicher Sequenz, (ii) die Abdeckung mehrerer Jahrzehnte, (iii) die Unterscheidung zwischen mehreren Waldformationen, und (iv) direkte Vergleiche von unterschiedlichen Fallstudien. Hinsichtlich Verknüpfungen von Fernerkundung mit biologischen Felddaten sind bisher keine Studien bekannt, die Zeitreihendaten für quantitative Aussagen zu Langzeitveränderungen von Biodiversität auf Landschaftsebene verwenden. Die Arbeit untersucht drei offiziell geschützte Gebiete: die Kakamega-Nandi forests in Westkenia (Hauptuntersuchungsgebiet) sowie Mabira Forest in Südost-Uganda und Budongo Forest in West-Uganda (zu Vergleichszwecken). Es wurden Landsat-Daten für insgesamt acht bzw. sieben Zeitpunkte zwischen 1972/73 und 2003 in ungefähr gleichen Abständen erworben. Mit Hilfe von überwachten, multispektralen Klassifizierungsverfahren wurden für die Kakamega-Nandi forests und Budongo Forest jeweils 12 Landbedeckungsklassen (sechs Waldformationen) und für Mabira Forest zehn Klassen unterschieden. Eine Genauigkeitsprüfung mit Hilfe von Fehlermatrizen ergab Gesamtklassifizierungsgenauigkeiten zwischen 81% und 85%. Die Kakamega-Nandi forests sind durch eine kontinuierliche Waldabnahme von 31% zwischen 1972/73 und 2001 gekennzeichnet, Mabira Forest zeigt einen abrupten Waldverlust von 24% in den späten 1970ern/frühen 1980ern, während die Ergebnisse für Budongo Forest eine relativ stabile Waldbedeckung ausweisen. Während eine Abschätzung der räumlichen Muster von Waldverlusten eine hohe Deckungsgleichheit mit Gebieten hoher Bevölkerungsdichte ergab, deutet die Anwendung eines räumlich expliziten Waldfragmentierungsindexes auf eine starke Korrelation von Waldfragmentierung mit der Art von Waldmanagement sowie mit der Erreichbarkeit von Wald über Straßen hin. Um den Einfluss von Langzeit-Landbedeckungsveränderungen auf Biodiversitätsmuster auf Landschaftsebene für das kenianische Hauptuntersuchungsgebiet quantitativ abzuschätzen wurden drei Datensätze mit biologischen Felderhebungen zur Abundanz von Schlüsselarten/-gruppen verwendet. Zu diesem Zweck wurde die Zeitreihe zunächst um drei weitere Landbedeckungs-Datensätze ergänzt, die aus Luftbildern (1965/67, 1948/(52)) bzw. alten topographischen Karten (1912/13) gewonnen wurden. Zur Vorhersage der raum-zeitlichen Verteilung der Treiberameise Dorylus wilverthi wurden GIS-Operatoren und statistische Tests (OLS bzw. SAR Regressionsmodelle) in einem räumlichen Modellierungsablauf kombiniert. Abundanzdaten von drei sich hinsichtlich ihrer Abhängigkeit von Wald unterscheidenden Vogelgilden wurden direkt auf fünf Waldbedeckungsklassen hochgerechnet, die in der Zeitreihe unterschieden werden konnten. Die Ergebnisse prognostizieren Abundanzabnahmen von 56% für D. wilverthi, von 58% für Ameisen-folgende Vögel und einen Gesamtverlust von 47% für die Vogelgilden, was in allen drei Fällen eine deutliche Überschreitung der Waldverlustrate von 31% darstellt. Zusätzliche Extrapolationen basierend auf Szenarien bestätigten die negativen ökologischen Konsequenzen der Zerteilung zusammenhängender Waldflächen bzw. zeigten andererseits das Potential von Aufforstungen mit einheimischen Arten auf. Die Visualisierung der Analyse- bzw. Modellierungsergebnisse führte zu unterschiedlichen Darstellungen: mit einer Reihe von nebeneinander positionierten Einzelkarten sowie einer Matrix von Einzelkarten, die jeweils Artenverteilungen zeigen, sollen Wissenschaftler und Entscheidungsträger angesprochen werden. Aus den Ergebnissen der Landbedeckungsanalyse für die drei Untersuchungsgebiete wurden Landbedeckungsveränderungstypen generiert und jeweils in einer synthetischen Karte dargestellt, die hauptsächlich für Wissenschaftler gedacht sind. Um die wesentlichen Waldveränderungen auch auf einfache Weise zu den Entscheidungsträgern zu kommunizieren, wurden zusätzliche Karten erstellt, die nur eine aggregierte Klasse „Waldbedeckung“ zeigen und jeweils auf drei Zeitschritte der Zeitreihen begrenzt sind. Zusätzlich wurde ein leicht zu bedienendes Visualisierungstool entwickelt, das für Wissenschaftler, Entscheidungsträger und die lokale Bevölkerung gedacht ist. Für die Zukunft wäre eine umfassendere Abschätzung unter Berücksichtigung zusätzlicher Arten/-gruppen sowie auch Ökosystemfunktionen und –dienstleistungen wünschenswert. Die Verknüpfung einer Applikation zur Landbedeckungsmodellierung mit einer Applikation zur Ausführung von empirischen Extrapolationsmodellen (in stärkerem Maße automatisiert als in dieser Arbeit) könnte im Idealfall in ein GIS-basiertes Tool zur integrativen Bewertung von Waldökosystemen münden, das dann als räumliches Entscheidungsunterstützungssystem verwendet werden könnte
    corecore