691 research outputs found

    Cyber-Based Contingency Analysis and Insurance Implications of Power Grid

    Get PDF
    Cybersecurity for power communication infrastructure is a serious subject that has been discussed for a decade since the first North American Electric Reliability Corporation (NERC) critical infrastructure protection (CIP) initiative in 2006. Its credibility on plausibility has been evidenced by attack events in the recent past. Although this is a very high impact, rare probability event, the establishment of quantitative measures would help asset owners in making a series of investment decisions. First, this dissertation tackles attackers\u27 strategies based on the current communication architecture between remote IP-based (unmanned) power substations and energy control centers. Hypothetically, the identification of intrusion paths will lead to the worst-case scenarios that the attackers could do harm to the grid, e.g., how this switching attack may perturb to future cascading outages within a control area when an IP-based substation is compromised. Systematic approaches are proposed in this dissertation on how to systematically determine pivotal substations and how investment can be prioritized to maintain and appropriate a reasonable investment in protecting their existing cyberinfrastructure. More specifically, the second essay of this dissertation focuses on digital protecting relaying, which could have similar detrimental effects on the overall grid\u27s stability. The R-k contingency analyses are proposed to verify with steady-state and dynamic simulations to ensure consistencies of simulation outcome in the proposed modeling in a power system. This is under the assumption that attackers are able to enumerate all electronic devices and computers within a compromised substation network. The essay also assists stakeholders (the defenders) in planning out exhaustively to identify the critical digital relays to be deployed in substations. The systematic methods are the combinatorial evaluation to incorporate the simulated statistics in the proposed metrics that are used based on the physics and simulation studies using existing power system tools. Finally, a risk transfer mechanism of cyber insurance against disruptive switching attacks is studied comprehensively based on the aforementioned two attackers\u27 tactics. The evaluation hypothetically assesses the occurrence of anomalies and how these footprints of attackers can lead to a potential cascading blackout as well as to restore the power back to normal stage. The research proposes a framework of cyber insurance premium calculation based on the ruin probability theory, by modeling potential electronic intrusion and its direct impacts. This preliminary actuarial model can further improve the security of the protective parameters of the critical infrastructure via incentivizing investment in security technologies

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Evolving Bitcoin Custody

    Full text link
    The broad topic of this thesis is the design and analysis of Bitcoin custody systems. Both the technology and threat landscape are evolving constantly. Therefore, custody systems, defence strategies, and risk models should be adaptive too. We introduce Bitcoin custody by describing the different types, design principles, phases and functions of custody systems. We review the technology stack of these systems and focus on the fundamentals; key-management and privacy. We present a perspective we call the systems view. It is an attempt to capture the full complexity of a custody system, including technology, people, and processes. We review existing custody systems and standards. We explore Bitcoin covenants. This is a mechanism to enforce constraints on transaction sequences. Although previous work has proposed how to construct and apply Bitcoin covenants, these require modifying the consensus rules of Bitcoin, a notoriously difficult task. We introduce the first detailed exposition and security analysis of a deleted-key covenant protocol, which is compatible with current consensus rules. We demonstrate a range of security models for deleted-key covenants which seem practical, in particular, when applied in autonomous (user-controlled) custody systems. We conclude with a comparative analysis with previous proposals. Covenants are often proclaimed to be an important primitive for custody systems, but no complete design has been proposed to validate that claim. To address this, we propose an autonomous custody system called Ajolote which uses deleted-key covenants to enforce a vault sequence. We evaluate Ajolote with; a model of its state dynamics, a privacy analysis, and a risk model. We propose a threat model for custody systems which captures a realistic attacker for a system with offline devices and user-verification. We perform ceremony analysis to construct the risk model.Comment: PhD thesi

    Adaptive Integrated Circuit Design for Variation Resilience and Security

    Get PDF
    The past few decades witness the burgeoning development of integrated circuit in terms of process technology scaling. Along with the tremendous benefits coming from the scaling, challenges are also presented in various stages. During the design time, the complexity of developing a circuit with millions to billions of smaller size transistors is extended after the variations are taken into account. The difficulty of analyzing these nondeterministic properties makes the allocation scheme of redundant resource hardly work in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from severe performance degradations owing to their physical attributes which are vulnerable to aging effects. As such, the post-silicon calibration approach gains increasing attentions to compensate the performance mismatch. For the user-end applications, additional system failures result from the pirated and counterfeited devices provided by the untrusted semiconductor supply chain. Again analog circuits show their weakness to this threat due to the shortage of piracy avoidance techniques. In this dissertation, we propose three adaptive integrated circuit designs to overcome these challenges respectively. The first one investigates the variability-aware gate implementation with the consideration of the overhead control of adaptivity assignment. This design improves the variation resilience typically for digital circuits while optimizing the power consumption and timing yield. The second design is implemented as a self-validation system for the calibration of diverse analog circuits. The system is completely integrated on chip to enhance the convenience without external assistance. In the last design, a classic analog component is further studied to establish the configurable locking mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the difficulty of searching the unique unlocking pattern of non-Boolean variables

    Coding policies for secure web applications

    Get PDF

    Fundamental Approaches to Software Engineering

    Get PDF
    computer software maintenance; computer software selection and evaluation; formal logic; formal methods; formal specification; programming languages; semantics; software engineering; specifications; verificatio
    corecore