2,989 research outputs found

    Verification of interlocking systems using statistical model checking

    Get PDF
    In the railway domain, an interlocking is the system ensuring safe train traffic inside a station by controlling its active elements such as the signals or points. Modern interlockings are configured using particular data, called application data, reflecting the track layout and defining the actions that the interlocking can take. The safety of the train traffic relies thereby on application data correctness, errors inside them can cause safety issues such as derailments or collisions. Given the high level of safety required by such a system, its verification is a critical concern. In addition to the safety, an interlocking must also ensure that availability properties, stating that no train would be stopped forever in a station, are satisfied. Most of the research dealing with this verification relies on model checking. However, due to the state space explosion problem, this approach does not scale for large stations. More recently, a discrete event simulation approach limiting the verification to a set of likely scenarios, was proposed. The simulation enables the verification of larger stations, but with no proof that all the interesting scenarios are covered by the simulation. In this paper, we apply an intermediate statistical model checking approach, offering both the advantages of model checking and simulation. Even if exhaustiveness is not obtained, statistical model checking evaluates with a parametrizable confidence the reliability and the availability of the entire system.Comment: 12 pages, 3 figures, 2 table

    Applied Bounded Model Checking for Interlocking System Designs

    Get PDF
    In this article the verification and validation of interlocking systems is investigated. Reviewing both geographical and route-related interlocking, the verification objectives can be structured from a perspective of computer science into (1) verification of static semantics, and (2) verification of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential safety violations. From a formal methods perspective, these verification objectives can be approached by theorem proving, global, or bounded model checking. This article explains the techniques for application of bounded model checking techniques, and discusses their advantages in comparison to the alternative approaches

    A service-oriented approach to embedded component-based manufacturing automation

    Get PDF
    This thesis is focused on the application of Component-Based (CB) technology to shop oor devices using a Service Oriented Architecture (SOA) and Web Services (WS) for the purpose of realising future generation agile manufacturing systems. The environment of manufacturing enterprises is now characterised by frequently changing market demands, time-to-market pressure, continuously emerging new technologies and global competition. Under these circumstances, manufacturing systems need to be agile and automation systems need to support this agility. More speci cally, an open, exible automation environment with plug and play connectivity is needed. Technically, this requires the easy connectivity of hardware devices and software components from di erent vendors. Functionally, there is a need of interoperability and integration of control functions on di erent hierarchical levels ranging from eld level to various higher level applications such as process control and operations management services. [Continues.

    Cyclic blackout mitigation and prevention

    Get PDF
    Severe and long-lasting power shortages plague many countries, resulting in cyclic blackouts affecting the life of millions of people. This research focuses on the design, development and evolution of a computer-controlled system for chronic cyclic blackouts mitigation based on the use of an agent-based distributed power management system integrating Supply Demand Matching (SDM) with the dynamic management of Heat, Ventilation, and Air Conditioning (HVAC) appliances. The principle is supported through interlocking different types of HVAC appliances within an adaptive cluster, the composition of which is dynamically updated according to the level of power secured from aggregating the surplus power from underutilised standby generation which is assumed to be changing throughout the day. The surplus power aggregation provides a dynamically changing flow, used to power a basic set of appliances and one HVAC per household. The proposed solution has two modes, cyclic blackout mitigation and prevention modes, selecting either one depends on the size of the power shortage. If the power shortage is severe, the system works in its cyclic blackout mitigation mode during the power OFF periods of a cyclic blackout. The system changes the composition of the HVAC cluster so that its demand added to the demand of basic household appliances matches the amount of secured supply. The system provides the best possible air conditioning/cooling service and distributes the usage right and duration of each type of HVAC appliance either equally among all houses or according to house temperature. However if the power shortage is limited and centred around the peak, the system works in its prevention mode, in such case, the system trades a minimum number of operational air conditioners (ACs) with air cooling counterparts in so doing reducing the overall demand. The solution assumes the use of a new breed of smart meters, suggested in this research, capable of dynamically rationing power provided to each household through a centrally specified power allocation for each family. This smart meter dynamically monitors each customer’s demand and ensures their allocation is never exceeded. The system implementation is evaluated utilising input power usage patterns collected through a field survey conducted in a residential quarter in Basra City, Iraq. The results of the mapping formed the foundation for a residential demand generator integrated in a custom platform (DDSM-IDEA) built as the development environment dedicated for implementing and evaluating the power management strategies. Simulation results show that the proposed solution provides an equitably distributed, comfortable quality of life level during cyclic blackout periods.Severe and long-lasting power shortages plague many countries, resulting in cyclic blackouts affecting the life of millions of people. This research focuses on the design, development and evolution of a computer-controlled system for chronic cyclic blackouts mitigation based on the use of an agent-based distributed power management system integrating Supply Demand Matching (SDM) with the dynamic management of Heat, Ventilation, and Air Conditioning (HVAC) appliances. The principle is supported through interlocking different types of HVAC appliances within an adaptive cluster, the composition of which is dynamically updated according to the level of power secured from aggregating the surplus power from underutilised standby generation which is assumed to be changing throughout the day. The surplus power aggregation provides a dynamically changing flow, used to power a basic set of appliances and one HVAC per household. The proposed solution has two modes, cyclic blackout mitigation and prevention modes, selecting either one depends on the size of the power shortage. If the power shortage is severe, the system works in its cyclic blackout mitigation mode during the power OFF periods of a cyclic blackout. The system changes the composition of the HVAC cluster so that its demand added to the demand of basic household appliances matches the amount of secured supply. The system provides the best possible air conditioning/cooling service and distributes the usage right and duration of each type of HVAC appliance either equally among all houses or according to house temperature. However if the power shortage is limited and centred around the peak, the system works in its prevention mode, in such case, the system trades a minimum number of operational air conditioners (ACs) with air cooling counterparts in so doing reducing the overall demand. The solution assumes the use of a new breed of smart meters, suggested in this research, capable of dynamically rationing power provided to each household through a centrally specified power allocation for each family. This smart meter dynamically monitors each customer’s demand and ensures their allocation is never exceeded. The system implementation is evaluated utilising input power usage patterns collected through a field survey conducted in a residential quarter in Basra City, Iraq. The results of the mapping formed the foundation for a residential demand generator integrated in a custom platform (DDSM-IDEA) built as the development environment dedicated for implementing and evaluating the power management strategies. Simulation results show that the proposed solution provides an equitably distributed, comfortable quality of life level during cyclic blackout periods
    • …
    corecore