7 research outputs found

    GMPLS-Controlled Dynamic Translucent Optical Networks

    Get PDF
    The evolution of optical technologies has paved the way to the migration from opaque optical networks (i.e., networks in which the optical signal is electronically regenerated at each node) to transparent (i.e., all-optical) networks. Translucent optical networks (i.e., optical networks with sparse opto-electronic regeneration) enable the exploitation of the benefits of both opaque and transparent networks while providing a suitable solution for dynamic connections. Translucent optical networks with dynamic connections can be controlled by the GMPLS protocol suite. This article discusses the enhancements that the GMPLS suite requires for the control of dynamic translucent optical networks with quality of transmission guarantees. Such enhancements concern QoT-awareness and regenerator-awareness and can be achieved by collecting and disseminating the information on QoT and regenerator availability, respectively, and by efficiently leveraging such information for traffic engineering purposes. More specifically, the article proposes two distributed approaches, based on the routing protocol and the signaling protocol, for disseminating regenerator information in the GMPLS control plane. Moreover, three strategies are introduced to efficiently and dynamically designate the regeneration node(s) along the connection route. Routing and signaling approaches are compared in terms of blocking probability, setup time, and control plane load during provisioning and restoration

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times

    Optimization of WDM Optical Networks

    Get PDF
    Optical network, with its enormous data carrying capability, has become the obvious choice for today\u27s high speed communication networks. Wavelength Division Multiplexing (WDM) technology and Traffic Grooming techniques enable us to efficiently exploit the huge bandwidth capacity of optical fibers. Wide area translucent networks use sparse placement of regenerators to overcome the physical impairments and wavelength constraints introduced by all optical (transparent) networks, and achieve a performance level close to fully switched (opaque) networks at a much lesser network cost. In this dissertation we discuss our research on several issues on the optimal design of optical networks, including optimal traffic grooming in WDM optical networks, optimal regenerator placement problem (RRP) in translucent networks, dynamic lightpath allocation and dynamic survivable lightpath allocation in translucent networks and static lightpath allocation in translucent networks. With extensive simulation experiments, we have established the effectiveness and efficiencies of our proposed algorithms

    In-operation planning in flexgrid optical core networks

    Get PDF
    New generation applications, such as cloud computing or video distribution, can run in a telecom cloud infrastructure where the datacenters (DCs) of telecom operators are integrated in their networks thus, increasing connections' dynamicity and resulting in time-varying traffic capacities, which might also entail changes in the traffic direction along the day. As a result, a flexible optical technology able to dynamically set-up variable-capacity connections, such as flexgrid, is needed. Nonetheless, network dynamicity might entail network performance degradation thus, requiring re-optimizing the network while it is in operation. This thesis is devoted to devise new algorithms to solve in-operation network planning problems aiming at enhancing the performance of optical networks and at studying their feasibility in experimental environments. In-operation network planning requires from an architecture enabling the deployment of algorithms that must be solved in stringent times. That architecture can be based on a Path Computation Element (PCE) or a Software Defined Networks controller. In this thesis, we assume the former split in a front-end PCE, in charge of provisioning paths and handling network events, and a specialized planning tool in the form of a back-end PCE responsible for solving in-operation planning problems. After the architecture to support in-operation planning is assessed, we focus on studying the following applications: 1) Spectrum fragmentation is one of the most important problems in optical networks. To alleviate it to some extent without traffic disruption, we propose a hitless spectrum defragmentation strategy. 2) Each connection affected by a failure can be recovered using multiple paths to increase traffic restorability at the cost of poor resource utilization. We propose re-optimizing the network after repairing the failure to aggregate and reroute those connections to release spectral resources. 3) We study two approaches to provide multicast services: establishing a point-to-multipoint connections at the optical layer and using multi-purpose virtual network topologies (VNT) to serve both unicast and multicast connectivity requests. 4) The telecom cloud infrastructure, enables placing contents closer to the users. Based on it, we propose a hierarchical content distribution architecture where VNTs permanently interconnect core DCs and metro DCs periodically synchronize contents to the core DCs. 5) When the capacity of the optical backbone network becomes exhausted, we propose using a planning tool with access to inventory and operation databases to periodically decide the equipment and connectivity to be installed at the minimum cost reducing capacity overprovisioning. 6) In multi-domain multi-operator scenarios, a broker on top of the optical domains can provision multi-domain connections. We propose performing intra-domain spectrum defragmentation when no contiguous spectrum can be found for a new connection request. 7) Packet nodes belonging to a VNT can collect and send incoming traffic monitoring data to a big data repository. We propose using the collected data to predict next period traffic and to adapt the VNT to future conditions. The methodology followed in this thesis consists in proposing a problem statement and/or a mathematical formulation for the problems identified and then, devising algorithms for solving them. Those algorithms are simulated and then, they are experimentally assessed in real test-beds. This thesis demonstrates the feasibility of performing in-operation planning in optical networks, shows that it enhances the performance of the network and validates the feasibility of its deployment in real networks. It shall be mentioned that part of the work reported in this thesis has been done within the framework of several research projects, namely IDEALIST (FP7-ICT-2011-8) and GEANT (238875) funded by the EC and SYNERGY (TEC2014-59995-R) funded by the MINECO.Les aplicacions de nova generació, com ara el cloud computing o la distribució de vídeo, es poden executar a infraestructures de telecom cloud (TCI) on operadors integren els seus datacenters (DC) a les seves xarxes. Aquestes aplicacions fan que incrementi tant la dinamicitat de les connexions, com la variabilitat de les seves capacitats en el temps, arribant a canviar de direcció al llarg del dia. Llavors, cal disposar de tecnologies òptiques flexibles, tals com flexgrid, que suportin aquesta dinamicitat a les connexions. Aquesta dinamicitat pot degradar el rendiment de la xarxa, obligant a re-optimitzar-la mentre és en operació. Aquesta tesis està dedicada a idear nous algorismes per a resoldre problemes de planificació sobre xarxes en operació (in-operation network planning) per millorar el rendiment de les xarxes òptiques i a estudiar la seva factibilitat en entorns experimentals. Aquests problemes requereixen d’una arquitectura que permeti desplegar algorismes que donin solucions en temps restrictius. L’arquitectura pot estar basada en un Element de Computació de Rutes (PCE) o en un controlador de Xarxes Definides per Software. En aquesta tesis, assumim un PCE principal encarregat d’aprovisionar rutes i gestionar esdeveniments de la xarxa, i una eina de planificació especialitzada en forma de PCE de suport per resoldre problemes d’in-operation planning. Un cop validada l’arquitectura que dona suport a in-operation planning, estudiarem les següents aplicacions: 1) La fragmentació d’espectre és un dels principals problemes a les xarxes òptiques. Proposem reduir-la en certa mesura, fent servir una estratègia que no afecta al tràfic durant la desfragmentació. 2) Cada connexió afectada per una fallada pot ser recuperada fent servir múltiples rutes incrementant la restaurabilitat de la xarxa, tot i empitjorar-ne la utilització de recursos. Proposem re-optimitzar la xarxa després de reparar una fallada per agregar i re-enrutar aquestes connexions tractant d’alliberar recursos espectrals. 3) Estudiem dues solucions per aprovisionar serveis multicast: establir connexions punt-a-multipunt sobre la xarxa òptica i utilitzar Virtual Network Topologies (VNT) multi-propòsit per a servir peticions de connectivitat tant unicast com multicast. 4) La TCI permet mantenir els continguts a prop dels usuaris. Proposem una arquitectura jeràrquica de distribució de continguts basada en la TCI, on els DC principals s’interconnecten per mitjà de VNTs permanents i els DCs metropolitans periòdicament sincronitzen continguts amb els principals. 5) Quan la capacitat de la xarxa òptica s’exhaureix, proposem utilitzar una eina de planificació amb accés a bases de dades d’inventari i operacionals per decidir periòdicament l’equipament i connectivitats a instal·lar al mínim cost i reduir el sobre-aprovisionament de capacitat. 6) En entorns multi-domini multi-operador, un broker per sobre dels dominis òptics pot aprovisionar connexions multi-domini. Proposem aplicar desfragmentació d’espectre intra-domini quan no es pot trobar espectre contigu per a noves peticions de connexió. 7) Els nodes d’una VNT poden recollir i enviar informació de monitorització de tràfic entrant a un repositori de big data. Proposem utilitzar aquesta informació per adaptar la VNT per a futures condicions. La metodologia que hem seguit en aquesta tesis consisteix en formalitzar matemàticament els problemes un cop aquests son identificats i, després, idear algorismes per a resoldre’ls. Aquests algorismes son simulats i finalment validats experimentalment en entorns reals. Aquesta tesis demostra la factibilitat d’implementar mecanismes d’in-operation planning en xarxes òptiques, mostra els beneficis que aquests aporten i valida la seva aplicabilitat en xarxes reals. Part del treball presentat en aquesta tesis ha estat dut a terme en el marc dels projectes de recerca IDEALIST (FP7-ICT-2011-8) i GEANT (238875), finançats per la CE, i SYNERGY (TEC2014-59995-R), finançat per el MINECO.Postprint (published version

    Virtual network provisioning over flexible optical transport infrastructure

    Get PDF
    Current transport network owners are focused on offering services on top of the infrastructures they own, while end users have no control over them. Traditionally, this has been their business model, as the cost of building the infrastructures to provide services is considerably high. However, the traffic on Internet has been, and still is, rapidly increasing over the years. Additionally new emerging services are pushing the limits of existing telecommunication infrastructures, particularly transport optical networks. To overcome such situation, network virtualization has been considered as an effective solution for the future optical networks architectures. Thanks to Virtual Optical Networks (VONs), it is possible to create mission-specific logic infrastructures, which fulfil the exact requirements of the applications that will run on top of them, sharing a unique physical substrate. However, the applicability of virtualization techniques to the optical domain is still under research, being on key point the mapping of the virtual resources to the actual physical ones. However, virtualization per se does not provide a solution flexible enough in terms of bandwidth utilization. For this to happen, an equally flexible transport technology must be adopted. Elastic Optical Networks (EONs) have been presented as an efficient solution for flexible bandwidth allocation. Additionally, due to the dinamicity of the traffic patterns that such virtual networks will face, it is highly desirable to provide a physical substrate that will help on keeping the associated operational expenditures (OPEX) at low levels, being a very important parameter the energy consumption. The energy consumption topic has been subject of big research efforts in order to provide more energy efficient optical transport networks, which, at their turn, will help on the creation of less costly virtual infrastructures. This thesis is devoted to the study of resource allocation to VONs, aiming to provide a flexible, efficient and optimized environment for the embedding of the VONs to the actual physical substrate. The considered scenario is composed of an underlying optical transport network and multiple client VONs that have to be allocated on top. In such scenario, a key aspect relates to how actual resources are associated to the virtual ones, guaranteeing the isolation among VONs and satisfying the resources requirements of every one of them. After an introduction to the thesis, chapter 2 surveys nowadays optical network infrastructures, concluding on the need to move towards a more dynamic and efficient optical network infrastructure. Next, it proceeds to summarize the state of the art of the concepts that enable for such network architecture, namely, VONs, EONs and energy efficient optical infrastructures. Then, chapters 3, 4 and 5 focus on providing solutions to optimize specific aspects of these enabling concepts. More in details, chapter 3 studies the main challenges on the VON embedding problem and presents solutions that allow for an optimized resoure assignment to VONs in a physical substrate depending on the VONs characteristics and the sppecific network substrate. Chapter 4 proposes the Split Spectrum (SS) approach as a way to improve the spectrum utilization of EONs. Finally, chapter 5 focuses on provide and evaluate routing and architectural solutions in aims to reduce the energy consumption of the optical substrate so as VONs with lower OPEX can be deployed on top of it.Els actuals propietaris de xarxes de transport es centren en oferir serveis mitjançant les infraestructures que posseeixen, mentre els usuaris finals no tenen cap control sobre aquests. Tradicionalment, aquest ha estat el seu model de negoci, ja que el cost de construir aquestes infraestructures és considerablement elevat. Tanmateix, el tràfic a Internet ha estat creixent de manera ràpida durant els últims anys. A més, l'aparició de nous serveis està portant al límit les actuals infraestructures de telecomunicacions, especialment les xarxes òptiques de transport. Per tal de superar aquesta situació, la virtualització de xarxes és considerada com una solució efectiva per les futures arquitectures de xarxes òptiques. Gràcies a les Xarxes Òptiques Virtuals (VONs), és possible crear infraestructures lògiques específiques en la seva missió, les quals permeten satisfer els requisits de les aplicacions que s'executaran a través d'elles, compartint un únic substrat físic. Tanmateix, l'aplicació de les tècniques de virtualització en el domini òptic encara és subjecte d'investigació, sent el mapeig entre els recursos virtuals i els recursos físics un punt clau que cal adreçar. No obstant això, la virtualització en si mateixa no proporciona una solució prou flexible en termes d'utilització de l'espectre. Per aquest motiu és necessari que el substrat físic adopti una tecnologia igualment flexible. Les Xarxes Òptiques Elàstiques (EONs) es presenten com una solució eficient per a una assignació flexible de l'espectre. A més, a causa del dinamisme dels perfils de trafic als quals s'enfrontaran les VONs, és desitjable proporcionar una infraestructura física que ajudi a mantenir baixes les despeses operatives (OPEX) d'aquestes xarxes, sent un paràmetre molt important el consum energètic. El tema del consum energètic ha estat subjecte de grans iniciatives de recerca per tal de proporcionar xarxes de transport òptiques més eficients energèticament, les quals permetran crear VONs menys costoses. Aquesta tesi està dedicada a l'estudi l'assignació de recursos a les VONs, amb l'objectiu de proporcionar un entorn flexible, eficient i optimitzat per a la incrustació de les VONs al substrat físic. L'escenari considerat es compon d'una xarxa de transport subjacent i múltiples VONs client a col·locar sobre el substrat físic. En aquest escenari, un aspecte clau es refereix a com els recursos reals s'associen als virtuals, garantint l'aïllament entre VONs i satisfent els recursos demanats per cada una d'elles. Després d'una introducció a la tesi, el capítol 2 revisa les infraestructures de xarxa òptica actuals, concloent en la necessitat d'avançar cap a infraestructures més dinàmiques i eficients. Tot seguit, es procedeix a resumir l'estat de l'art dels conceptes que habilitaran aquesta arquitectura de xarxa, bàsicament, VONs, EONs i les xarxes òptiques de baix consum. A continuació, els capítols 3, 4 i 5 es centren en proporcionar solucions per optimitzar aspectes específics d'aquests conceptes. Més en detall, el capítol 3 estudia els principals reptes en el problema de la incrustació de VONs i presenta solucions que permetin assignar recursos de manera optimitzada a les VONs en un substrat físic. El capítol 4 proposa el concepte de l'Split Spectrum (SS) com una forma de millorar la utilització de l'espectre en les EONs. Finalment, el capítol 5 es centra en proporcionar i avaluar solucions arquitectòniques i d'enrutament amb l'objectiu de reduir el consum d'energia del substrat òptic de tal manera que VONs amb menor OPEX puguin ser desplegades a través d'ell.Los actuales propietarios de las redes de transporte se centran en ofrecer servicios mediante las infraestructuras que poseen y gestionan, mientras que los usuarios finales no tienen ningún control sobre estos. Tradicionalmente, este ha sido el modelo de negocio adoptado por los operadores de redes, ya que el coste de construir y mantener las infraestructuras correspondientes por tal de ofrecer servicios mediante ellas era, y aun es, considerablemente elevado. No obstante, el tráfico en Internet ha crecido de manera rápida y sostenida durante los últimos años y se prevé que continuara con este crecimiento en el futuro. Además, la aparición de nuevos servicios y paradigmas, están llevando al límite las actuales infraestructuras de telecomunicaciones, especialmente las redes de trasporte óptico. Por tal de superar dicha situación, la virtualización de redes ha sido considerada como una solución efectiva para las futuras arquitecturas de redes ópticas. Gracias a las Redes Ópticas Virtuales (VONs), es posible crear infraestructuras lógicas especificas en su misión, las cuales podrán satisfacer los requisitos de las aplicaciones que se ejecutaran a través de ellas, usando y compartiendo un único sustrato físico. No obstante, la aplicación de las técnicas de virtualización en el dominio óptico aun es sujeto de investigación, siendo el mapeo entre los recursos virtuales y los físicos (también conocido como incrustación de la red virtual) un punto clave a solucionar. No obstante, la virtualización por si misma no ofrece una solución suficientemente flexible en términos de utilización del ancho de banda. Por tal de proporcionar un entorno de virtualización suficientemente flexible para acomodar cualquier ancho de banda con suficiente granularidad, es necesario que el sustrato físico adopte una tecnología de transporte igual de flexible. Las Redes Ópticas Elásticas (EONs) se presentan como una solución eficiente para una asignación flexible del ancho de banda en redes ópticas. Además, debido a la heterogeneidad y dinamismo de los perfiles de tráfico a los cuales se enfrentaran las redes virtuales, es altamente deseable proporcionar una infraestructura física que ayuda a mantener bajos los gastos operativos (OPEX) de estas redes, siendo un parámetro muy importante el consumo energético asociado a la operación de las VONs. El tema del consumo energético ha sido, y aun es, sujeto de grandes iniciativas de investigación centradas en desarrollar nuevas arquitecturas de dispositivos o algoritmos de asignación de recursos conscientes del consumo energético por tal de proporcionar redes de transporte ópticas más eficientes energéticamente que, a su vez, permitan crear infraestructuras virtuales menos costosas des del punto de vista energético. Esta tesis se centra en el estudio de la composición y asignación de recursos a las VONs, con el objetivo de proporcionar un entorno flexible, eficiente y optimizado para la incrustación de las VONs en el sustrato físico real. El escenario considerado se compone de una red de transporte subyacente, ya sea una Red Óptica de Conmutación de Longitud de Onda (WSON) o EON, y múltiples VONs cliente, las cuales se colocaran encima del sustrato físico. En este escenario, un aspecto clave se refiere a como los recursos reales se asocian a los virtuales, garantizando el aislamiento entre VONs y satisfaciendo los recursos pedidos (por ejemplo, capacidad de enlace) por cada una de ellas. Después de una introducción a la tesis, el capítulo 2 revisa las infraestructuras de redes ópticas actuales, concluyendo en la necesidad de avanzar hacia una infraestructura de red óptica más dinámica y eficiente por tal de afrontar el crecimiento del tráfico en Internet y la aparición de nuevos servicios y paradigmas. Seguidamente, se procede a resumir el estado del arte de los conceptos y paradigmas que permitirán habilitar esta arquitectura de red, básicamente, VONs, EONs y las infraestructuras ópticas de bajo consumo energético. A continuación, los capítulos 3, 4 y 5 se centran en proporcionar soluciones para optimizar aspectos específicos de estos conceptos con la finalidad de proporcionar un marco optimizado que ayudara en la configuración de las futuras infraestructuras de redes ópticas y sus modelos de negocio. Concretamente, el capítulo 3 estudia los principales retos en el problema de la incrustación de VONs y presenta soluciones que permiten una asignación de recursos optimizada a las VONs en un sustrato físico dependiendo de las características de las VONs y del sustrato de red. El capítulo 4 propone el concepto de Split Spectrum (SS) como una forma de mejorar la utilizaci_on del espectro en las EONs. Finalmente, el capítulo 5 se centra en proporcionar y evaluar soluciones arquitectónicas y de enrutamiento con el objetivo de reducir el consumo energético del sustrato óptico de tal manera que VONs con menor OPEX puedan ser desplegadas mediante este sustrato
    corecore