4,620 research outputs found

    Quantum measurements of atoms using cavity QED

    Full text link
    Generalized quantum measurements are an important extension of projective or von Neumann measurements, in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two non-standard quantum measurements using cavity quantum electrodynamics (QED). The first measurement optimally and unabmiguously distinguishes between two non-orthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionisation detection of atoms, and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurement have only been realized on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons, but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.Comment: 10 pages, 5 figure

    Chaotic Crystallography: How the physics of information reveals structural order in materials

    Full text link
    We review recent progress in applying information- and computation-theoretic measures to describe material structure that transcends previous methods based on exact geometric symmetries. We discuss the necessary theoretical background for this new toolset and show how the new techniques detect and describe novel material properties. We discuss how the approach relates to well known crystallographic practice and examine how it provides novel interpretations of familiar structures. Throughout, we concentrate on disordered materials that, while important, have received less attention both theoretically and experimentally than those with either periodic or aperiodic order.Comment: 9 pages, two figures, 1 table; http://csc.ucdavis.edu/~cmg/compmech/pubs/ChemOpinion.ht

    Quantum computation with mesoscopic superposition states

    Get PDF
    We present a strategy to engineer a simple cavity-QED two-bit universal quantum gate using mesoscopic distinct quantum superposition states. The dissipative effect on decoherence and amplitude damping of the quantum bits are analyzed and the critical parameters are presented.Comment: 9 pages, 5 Postscript and 1 Encapsulated Postscript figures. To be published in Phys. Rev.

    Communication Steps for Parallel Query Processing

    Full text link
    We consider the problem of computing a relational query qq on a large input database of size nn, using a large number pp of servers. The computation is performed in rounds, and each server can receive only O(n/p1−ε)O(n/p^{1-\varepsilon}) bits of data, where ε∈[0,1]\varepsilon \in [0,1] is a parameter that controls replication. We examine how many global communication steps are needed to compute qq. We establish both lower and upper bounds, in two settings. For a single round of communication, we give lower bounds in the strongest possible model, where arbitrary bits may be exchanged; we show that any algorithm requires ε≥1−1/τ∗\varepsilon \geq 1-1/\tau^*, where τ∗\tau^* is the fractional vertex cover of the hypergraph of qq. We also give an algorithm that matches the lower bound for a specific class of databases. For multiple rounds of communication, we present lower bounds in a model where routing decisions for a tuple are tuple-based. We show that for the class of tree-like queries there exists a tradeoff between the number of rounds and the space exponent ε\varepsilon. The lower bounds for multiple rounds are the first of their kind. Our results also imply that transitive closure cannot be computed in O(1) rounds of communication

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure

    Independent individual addressing of multiple neutral atom qubits with a MEMS beam steering system

    Full text link
    We demonstrate a scalable approach to addressing multiple atomic qubits for use in quantum information processing. Individually trapped 87Rb atoms in a linear array are selectively manipulated with a single laser guided by a MEMS beam steering system. Single qubit oscillations are shown on multiple sites at frequencies of ~3.5 MHz with negligible crosstalk to neighboring sites. Switching times between the central atom and its closest neighbor were measured to be 6-7 us while moving between the central atom and an atom two trap sites away took 10-14 us.Comment: 9 pages, 3 figure
    • …
    corecore