18,134 research outputs found

    Trust Management for Secure Routing Forwarding Data Using Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) have established the connection to source and destination. For example this often faces disconnection and unreliable wireless connections. A delay tolerant network (DTNs) provides a network imposes disruption or delay. The delay tolerant networks operate in limited resources such as memory size, central processing unit. Trust management protocol uses a dynamic threshold updating which overcomes the problems .The dynamic threshold update reduces the false detection probability of the malicious nodes. The system proposes a secure routing management schemes to adopt information security principles successfully. It analyzes the basic security principles and operations for trust authentication which is applicable in delay tolerant networks (DTNs).For security the proposed system identifies the store and forward approach in network communications and analyzes the routing in cases like selfish contact and collaboration contact methods. The proposed method identifies ZRP protocol scheme and it enhances the scheme using methods namely distributed operation, mobility, delay analysis, security association and trust modules. This security scheme analyzes the performance analysis and proposed algorithm based on parameter time, authentication, security, and secure routing. From this analysis, this research work identifies the issues in DTNs secure routing and enhances ZRP (Zone Routing Protocol) by suggesting an authentication principle as a noted security principle for extremely information security concepts

    Static Knowledge-Based Authentication Mechanism for Hadoop Distributed Platform using Kerberos

    Get PDF
    With the quickened phenomenal expansion of data, storing massive data has become important and increasingly growing day by day. Thus, big data came to express this large data and handling it properly under three important characteristics such as volume, veracity, and Variety. One practical of big data problems is user and services authentication. Kerberos v5 protocol provided a new solution to such this problem in the Hadoop-distributed platform (HDP). In this paper, we suggest a credible scheme by adding one more level of protection and authentication security to the Kerberos v5 protocol by using a static knowledge-based authentication (SKBA). Where in the login and verification phase by using Kerberos protocol, the KDC will replay with a question to the user-side to check the actual presence of user which the user already answered this question in his registration phase. Our credible scheme is useful in case of capturing messages that enable an eavesdropper to get the ticket that allows getting access to the HDFS as well as to avoid the common attacks with less computation, communication and storage cost. The proposed scheme works seriously and strictly to ensure the registration by delivery of user information over an insecure network in a safe manner and store this information in the KDC-database to be used later for getting access with HDFS

    Lightweight payload encryption-based authentication scheme for advanced metering infrastructure sensor networks

    Get PDF
    The Internet of Things (IoT) connects billions of sensors to share and collect data at any time and place. The Advanced Metering Infrastructure (AMI) is one of the most important IoT applications. IoT supports AMI to collect data from smart sensors, analyse and measure abnormalities in the energy consumption pattern of sensors. However, two-way communication in distributed sensors is sensitive and tends towards security and privacy issues. Before deploying distributed sensors, data confidentiality and privacy and message authentication for sensor devices and control messages are the major security requirements. Several authentications and encryption protocols have been developed to provide confidentiality and integrity. However, many sensors in distributed systems, resource constraint smart sensors, and adaptability of IoT communication protocols in sensors necessitate designing an efficient and lightweight security authentication scheme. This paper proposes a Payload Encryption-based Optimisation Scheme for lightweight authentication (PEOS) on distributed sensors. The PEOS integrates and optimises important features of Datagram Transport Layer Security (DTLS) in Constrained Application Protocol (CoAP) architecture instead of implementing the DTLS in a separate channel. The proposed work designs a payload encryption scheme and an Optimised Advanced Encryption Standard (OP-AES). The PEOS modifies the DTLS handshaking and retransmission processes in PEOS using payload encryption and NACK messages, respectively. It also removes the duplicate features of the protocol version and sequence number without impacting the performance of CoAP. Moreover, the PEOS attempts to improve the CoAP over distributed sensors in the aspect of optimised AES operations, such as parallel execution of S-boxes in SubBytes and delayed Mixcolumns. The efficiency of PEOS authentication is evaluated on Conitki OS using the Cooja simulator for lightweight security and authentication. The proposed scheme attains better throughput while minimising the message size overhead by 9% and 23% than the existing payload-based mutual authentication PbMA and basic DTLS/CoAP scheme in random network topologies with less than 50 nodes

    Cryptanalysis of two mutual authentication protocols for low-cost RFID

    Full text link
    Radio Frequency Identification (RFID) is appearing as a favorite technology for automated identification, which can be widely applied to many applications such as e-passport, supply chain management and ticketing. However, researchers have found many security and privacy problems along RFID technology. In recent years, many researchers are interested in RFID authentication protocols and their security flaws. In this paper, we analyze two of the newest RFID authentication protocols which proposed by Fu et al. and Li et al. from several security viewpoints. We present different attacks such as desynchronization attack and privacy analysis over these protocols.Comment: 17 pages, 2 figures, 1 table, International Journal of Distributed and Parallel system

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    • …
    corecore