599 research outputs found

    A simple encoder scheme for distributed residual video coding.

    Get PDF
    Rate-Distortion (RD) performance of Distributed Video Coding (DVC) is considerably less than that of conventional predictive video coding. In order to reduce the performance gap, many methods and techniques have been proposed to improve the coding efficiency of DVC with increased system complexity, especially techniques employed at the encoder such as encoder mode decisions, optimal quantization, hash methods etc., no doubt increase the complexity of the encoder. However, low complexity encoder is a widely desired feature of DVC. In order to improve the coding efficiency while maintaining low complexity encoder, this paper focuses on Distributed Residual Video Coding (DRVC) architecture and proposes a simple encoder scheme. The main contributions of this paper are as follows: 1) propose a bit plane block based method combined with bit plane re-arrangement to improve the dependency between source and Side Information (SI), and meanwhile, to reduce the amount of data to be channel encoded 2) present a simple iterative dead-zone quantizer with 3 levels in order to adjust quantization from coarse to fine. The simulation results show that the proposed scheme outperforms DISCOVER scheme for low to medium motion video sequences in terms of RD performance, and maintains a low complexity encoder at the same time

    Steered Mixture-of-Experts' for image and light field representation, processing and coding : a universal approach for immersive experiences of camera-captured scenes

    Get PDF

    Adaptive filtering techniques for acquisition noise and coding artifacts of digital pictures

    Get PDF
    The quality of digital pictures is often degraded by various processes (e.g, acquisition or capturing, compression, filtering process, transmission, etc). In digital image/video processing systems, random noise appearing in images is mainly generated during the capturing process; while the artifacts (or distortions) are generated in compression or filtering processes. This dissertation looks at digital image/video quality degradations with possible solution for post processing techniques for coding artifacts and acquisition noise reduction for images/videos. Three major issues associated with the image/video degradation are addressed in this work. The first issue is the temporal fluctuation artifact in digitally compressed videos. In the state-of-art video coding standard, H.264/AVC, temporal fluctuations are noticeable between intra picture frames or between an intra picture frame and neighbouring inter picture frames. To resolve this problem, a novel robust statistical temporal filtering technique is proposed. It utilises a re-descending robust statistical model with outlier rejection feature to reduce the temporal fluctuations while preserving picture details and motion sharpness. PSNR and sum of square difference (SSD) show improvement of proposed filters over other benchmark filters. Even for videos contain high motion, the proposed temporal filter shows good performances in fluctuation reduction and motion clarity preservation compared with other baseline temporal filters. The second issue concerns both the spatial and temporal artifacts (e.g, blocking, ringing, and temporal fluctuation artifacts) appearing in compressed video. To address this issue, a novel joint spatial and temporal filtering framework is constructed for artifacts reduction. Both the spatial and the temporal filters employ a re-descending robust statistical model (RRSM) in the filtering processes. The robust statistical spatial filter (RSSF) reduces spatial blocking and ringing artifacts whilst the robust statistical temporal filter (RSTF) suppresses the temporal fluctuations. Performance evaluations demonstrate that the proposed joint spatio-temporal filter is superior to H.264 loop filter in terms of spatial and temporal artifacts reduction and motion clarity preservation. The third issue is random noise, commonly modeled as mixed Gaussian and impulse noise (MGIN), which appears in image/video acquisition process. An effective method to estimate MGIN is through a robust estimator, median absolute deviation normalized (MADN). The MADN estimator is used to separate the MGIN model into impulse and additive Gaussian noise portion. Based on this estimation, the proposed filtering process is composed of a modified median filter for impulse noise reduction, and a DCT transform based denoising filter for additive Gaussian noise reduction. However, this DCT based denoising filter produces temporal fluctuations for videos. To solve this problem, a temporal filter is added to the filtering process. Therefore, another joint spatio-temporal filtering scheme is built to achieve the best visual quality of denoised videos. Extensive experiments show that the proposed joint spatio-temporal filtering scheme outperforms other benchmark filters in noise and distortions suppression

    Processing Decoded Video for Backlight Dimming:Video Quality Enhancement on LCD with Dynamic Local Backlight

    Get PDF
    corecore