2,083 research outputs found

    Variational Bayesian algorithm for distributed compressive sensing

    Get PDF
    Distributed compressive sensing (DCS) concerns the reconstruction of multiple sensor signals with reduced numbers of measurements, which exploits both intra- and inter-signal correlations. In this paper, we propose a novel Bayesian DCS algorithm based on variational Bayesian inference. The proposed algorithm decouples the common component, that characterizes inter-signal correlation, from innovation components, that represent intra-signal correlation. Such an operation results in a computational complexity of reconstruction which is linear with the number of signals. The superior performance of the algorithm, in terms of the computing time and reconstruction quality, is demonstrated by numerical simulations in comparison with other existing reconstruction methods.This work is supported by EPSRC Research Grant (EP/K033700/1); the Natural Science Foundation of China (61401018, U1334202); the State Key Laboratory of Rail Traffic Control and Safety (RCS2014ZT08), Beijing Jiaotong University; the Fundamental Research Funds for the Central Universities (2014JBM149); the Key Grant Project of Chinese Ministry of Education (313006); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education MinistryThis is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ICC.2015.724909

    Variational Bayesian Inference of Line Spectra

    Get PDF
    In this paper, we address the fundamental problem of line spectral estimation in a Bayesian framework. We target model order and parameter estimation via variational inference in a probabilistic model in which the frequencies are continuous-valued, i.e., not restricted to a grid; and the coefficients are governed by a Bernoulli-Gaussian prior model turning model order selection into binary sequence detection. Unlike earlier works which retain only point estimates of the frequencies, we undertake a more complete Bayesian treatment by estimating the posterior probability density functions (pdfs) of the frequencies and computing expectations over them. Thus, we additionally capture and operate with the uncertainty of the frequency estimates. Aiming to maximize the model evidence, variational optimization provides analytic approximations of the posterior pdfs and also gives estimates of the additional parameters. We propose an accurate representation of the pdfs of the frequencies by mixtures of von Mises pdfs, which yields closed-form expectations. We define the algorithm VALSE in which the estimates of the pdfs and parameters are iteratively updated. VALSE is a gridless, convergent method, does not require parameter tuning, can easily include prior knowledge about the frequencies and provides approximate posterior pdfs based on which the uncertainty in line spectral estimation can be quantified. Simulation results show that accounting for the uncertainty of frequency estimates, rather than computing just point estimates, significantly improves the performance. The performance of VALSE is superior to that of state-of-the-art methods and closely approaches the Cram\'er-Rao bound computed for the true model order.Comment: 15 pages, 8 figures, accepted for publication in IEEE Transactions on Signal Processin
    • …
    corecore