2,890 research outputs found

    Engineering Emergence: A Survey on Control in the World of Complex Networks

    Get PDF
    Complex networks make an enticing research topic that has been increasingly attracting researchers from control systems and various other domains over the last two decades. The aim of this paper was to survey the interest in control related to complex networks research over time since 2000 and to identify recent trends that may generate new research directions. The survey was performed for Web of Science, Scopus, and IEEEXplore publications related to complex networks. Based on our findings, we raised several questions and highlighted ongoing interests in the control of complex networks.publishedVersio

    Quality of services solution for efficient communication within a distributed urban traffic control system

    Get PDF
    Modern Urban Traffic Control (UTC) systems are based on cooperative entities, able to produce optimal signalling strategies independently of traffic control centres. The more information the junction’s entities receive from their neighbours, the more effective the distributed system is. But not all the information is critical. For improving the transmission of data and building an efficient QoS structure, a simplified UTC packet is proposed. This solution can be deployed in any real UTC distributed system for guaranteeing that critical traffic parameters are successfully exchanged between its local decision making units in order to ensure a fully adaptive operation

    Tempo and walking speed with music in the urban

    Get PDF
    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Kralove. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement performance

    Communications with guaranteed bandwidth and low latency using frequency-referenced multiplexing

    Get PDF
    Emerging cloud applications such as virtual reality and connected car fleets demand guaranteed connections, as well as low and stable latency, to edge data centres. Currently, user–cloud communications rely on time-scheduled data frames through tree-topology fibre networks, which are incapable of providing guaranteed connections with low or stable latency and cannot be scaled to a larger number of users. Here we show that a frequency-referenced multiplexing method can provide guaranteed bandwidth and low latency for time-critical applications. We use clock and optical frequency synchronization, enabled by frequency comb and signal processing techniques, to provide each user with dedicated optical bandwidth, creating scalable user–cloud upstream communications. As a proof of concept, we demonstrate a frequency-division multiplexing system servicing up to 64 users with an aggregate bandwidth of 160 GHz, exhibiting a data rate of up to 4.3 Gbps per user (240.0 Gbps aggregated capacity considering a 200 GHz wavelength band) with a high receiver sensitivity of –35 dBm
    • …
    corecore