603 research outputs found

    Energy Beamforming with One-Bit Feedback

    Full text link
    Wireless energy transfer (WET) has attracted significant attention recently for providing energy supplies wirelessly to electrical devices without the need of wires or cables. Among different types of WET techniques, the radio frequency (RF) signal enabled far-field WET is most practically appealing to power energy constrained wireless networks in a broadcast manner. To overcome the significant path loss over wireless channels, multi-antenna or multiple-input multiple-output (MIMO) techniques have been proposed to enhance the transmission efficiency and distance for RF-based WET. However, in order to reap the large energy beamforming gain in MIMO WET, acquiring the channel state information (CSI) at the energy transmitter (ET) is an essential task. This task is particularly challenging for WET systems, since existing channel training and feedback methods used for communication receivers may not be implementable at the energy receiver (ER) due to its hardware limitation. To tackle this problem, in this paper we consider a multiuser MIMO system for WET, where a multiple-antenna ET broadcasts wireless energy to a group of multiple-antenna ERs concurrently via transmit energy beamforming. By taking into account the practical energy harvesting circuits at the ER, we propose a new channel learning method that requires only one feedback bit from each ER to the ET per feedback interval. The feedback bit indicates the increase or decrease of the harvested energy by each ER between the present and previous intervals, which can be measured without changing the existing hardware at the ER. Based on such feedback information, the ET adjusts transmit beamforming in different training intervals and at the same time obtains improved estimates of the MIMO channels to ERs by applying a new approach termed analytic center cutting plane method (ACCPM).Comment: This is the longer version of a paper to appear in IEEE Transactions on Signal Processin

    Optimized Training Design for Wireless Energy Transfer

    Full text link
    Radio-frequency (RF) enabled wireless energy transfer (WET), as a promising solution to provide cost-effective and reliable power supplies for energy-constrained wireless networks, has drawn growing interests recently. To overcome the significant propagation loss over distance, employing multi-antennas at the energy transmitter (ET) to more efficiently direct wireless energy to desired energy receivers (ERs), termed \emph{energy beamforming}, is an essential technique for enabling WET. However, the achievable gain of energy beamforming crucially depends on the available channel state information (CSI) at the ET, which needs to be acquired practically. In this paper, we study the design of an efficient channel acquisition method for a point-to-point multiple-input multiple-output (MIMO) WET system by exploiting the channel reciprocity, i.e., the ET estimates the CSI via dedicated reverse-link training from the ER. Considering the limited energy availability at the ER, the training strategy should be carefully designed so that the channel can be estimated with sufficient accuracy, and yet without consuming excessive energy at the ER. To this end, we propose to maximize the \emph{net} harvested energy at the ER, which is the average harvested energy offset by that used for channel training. An optimization problem is formulated for the training design over MIMO Rician fading channels, including the subset of ER antennas to be trained, as well as the training time and power allocated. Closed-form solutions are obtained for some special scenarios, based on which useful insights are drawn on when training should be employed to improve the net transferred energy in MIMO WET systems.Comment: 30 pages, 9 figures, to appear in IEEE Trans. on Communication

    Frequency-domain transmit processing for MIMO SC-FDMA in wideband propagation channels

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Advanced Quantizer Designs for FDD-Based FD-MIMO Systems Using Uniform Planar Arrays

    Full text link
    Massive multiple-input multiple-output (MIMO) systems, which utilize a large number of antennas at the base station, are expected to enhance network throughput by enabling improved multiuser MIMO techniques. To deploy many antennas in reasonable form factors, base stations are expected to employ antenna arrays in both horizontal and vertical dimensions, which is known as full-dimension (FD) MIMO. The most popular two-dimensional array is the uniform planar array (UPA), where antennas are placed in a grid pattern. To exploit the full benefit of massive MIMO in frequency division duplexing (FDD), the downlink channel state information (CSI) should be estimated, quantized, and fed back from the receiver to the transmitter. However, it is difficult to accurately quantize the channel in a computationally efficient manner due to the high dimensionality of the massive MIMO channel. In this paper, we develop both narrowband and wideband CSI quantizers for FD-MIMO taking the properties of realistic channels and the UPA into consideration. To improve quantization quality, we focus on not only quantizing dominant radio paths in the channel, but also combining the quantized beams. We also develop a hierarchical beam search approach, which scans both vertical and horizontal domains jointly with moderate computational complexity. Numerical simulations verify that the performance of the proposed quantizers is better than that of previous CSI quantization techniques.Comment: 15 pages, 6 figure

    Signal and System Design for Wireless Power Transfer : Prototype, Experiment and Validation

    Get PDF
    A new line of research on communications and signals design for Wireless Power Transfer (WPT) has recently emerged in the communication literature. Promising signal strategies to maximize the power transfer efficiency of WPT rely on (energy) beamforming, waveform, modulation and transmit diversity, and a combination thereof. To a great extent, the study of those strategies has so far been limited to theoretical performance analysis. In this paper, we study the real over-the-air performance of all the aforementioned signal strategies for WPT. To that end, we have designed, prototyped and experimented an innovative radiative WPT architecture based on Software-Defined Radio (SDR) that can operate in open-loop and closed-loop (with channel acquisition at the transmitter) modes. The prototype consists of three important blocks, namely the channel estimator, the signal generator, and the energy harvester. The experiments have been conducted in a variety of deployments, including frequency flat and frequency selective channels, under static and mobility conditions. Experiments highlight that a channeladaptive WPT architecture based on joint beamforming and waveform design offers significant performance improvements in harvested DC power over conventional single-antenna/multiantenna continuous wave systems. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the crucial and beneficial role played by the energy harvester nonlinearity.Comment: Accepted to IEEE Transactions on Wireless Communication
    corecore