3,038 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Occupational health and safety issues in human-robot collaboration: State of the art and open challenges

    Get PDF
    Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Shared-Control Teleoperation Paradigms on a Soft Growing Robot Manipulator

    Full text link
    Semi-autonomous telerobotic systems allow both humans and robots to exploit their strengths, while enabling personalized execution of a task. However, for new soft robots with degrees of freedom dissimilar to those of human operators, it is unknown how the control of a task should be divided between the human and robot. This work presents a set of interaction paradigms between a human and a soft growing robot manipulator, and demonstrates them in both real and simulated scenarios. The robot can grow and retract by eversion and inversion of its tubular body, a property we exploit to implement interaction paradigms. We implemented and tested six different paradigms of human-robot interaction, beginning with full teleoperation and gradually adding automation to various aspects of the task execution. All paradigms were demonstrated by two expert and two naive operators. Results show that humans and the soft robot manipulator can split control along degrees of freedom while acting simultaneously. In the simple pick-and-place task studied in this work, performance improves as the control is gradually given to the robot, because the robot can correct certain human errors. However, human engagement and enjoyment may be maximized when the task is at least partially shared. Finally, when the human operator is assisted by haptic feedback based on soft robot position errors, we observed that the improvement in performance is highly dependent on the expertise of the human operator.Comment: 15 pages, 14 figure

    Sociotechnical Imaginaries, the Future and the Third Offset Strategy

    Get PDF

    SCALING UP TASK EXECUTION ON RESOURCE-CONSTRAINED SYSTEMS

    Get PDF
    The ubiquity of executing machine learning tasks on embedded systems with constrained resources has made efficient execution of neural networks on these systems under the CPU, memory, and energy constraints increasingly important. Different from high-end computing systems where resources are abundant and reliable, resource-constrained systems only have limited computational capability, limited memory, and limited energy supply. This dissertation focuses on how to take full advantage of the limited resources of these systems in order to improve task execution efficiency from different aspects of the execution pipeline. While the existing literature primarily aims at solving the problem by shrinking the model size according to the resource constraints, this dissertation aims to improve the execution efficiency for a given set of tasks from the following two aspects. Firstly, we propose SmartON, which is the first batteryless active event detection system that considers both the event arrival pattern as well as the harvested energy to determine when the system should wake up and what the duty cycle should be. Secondly, we propose Antler, which exploits the affinity between all pairs of tasks in a multitask inference system to construct a compact graph representation of the task set for a given overall size budget. To achieve the aforementioned algorithmic proposals, we propose the following hardware solutions. One is a controllable capacitor array that can expand the system’s energy storage on-the-fly. The other is a FRAM array that can accommodate multiple neural networks running on one system.Doctor of Philosoph

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Under construction: infrastructure and modern fiction

    Full text link
    In this dissertation, I argue that infrastructural development, with its technological promises but widening geographic disparities and social and environmental consequences, informs both the narrative content and aesthetic forms of modernist and contemporary Anglophone fiction. Despite its prevalent material forms—roads, rails, pipes, and wires—infrastructure poses particular formal and narrative problems, often receding into the background as mere setting. To address how literary fiction theorizes the experience of infrastructure requires reading “infrastructurally”: that is, paying attention to the seemingly mundane interactions between characters and their built environments. The writers central to this project—James Joyce, William Faulkner, Karen Tei Yamashita, and Mohsin Hamid—take up the representational challenges posed by infrastructure by bringing transit networks, sanitation systems, and electrical grids and the histories of their development and use into the foreground. These writers call attention to the political dimensions of built environments, revealing the ways infrastructures produce, reinforce, and perpetuate racial and socioeconomic fault lines. They also attempt to formalize the material relations of power inscribed by and within infrastructure; the novel itself becomes an imaginary counterpart to the technologies of infrastructure, a form that shapes and constrains what types of social action and affiliation are possible

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well
    corecore