5,151 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Spatial Data Quality in the IoT Era:Management and Exploitation

    Get PDF
    Within the rapidly expanding Internet of Things (IoT), growing amounts of spatially referenced data are being generated. Due to the dynamic, decentralized, and heterogeneous nature of the IoT, spatial IoT data (SID) quality has attracted considerable attention in academia and industry. How to invent and use technologies for managing spatial data quality and exploiting low-quality spatial data are key challenges in the IoT. In this tutorial, we highlight the SID consumption requirements in applications and offer an overview of spatial data quality in the IoT setting. In addition, we review pertinent technologies for quality management and low-quality data exploitation, and we identify trends and future directions for quality-aware SID management and utilization. The tutorial aims to not only help researchers and practitioners to better comprehend SID quality challenges and solutions, but also offer insights that may enable innovative research and applications

    A Memory-Efficient Sketch Method for Estimating High Similarities in Streaming Sets

    Full text link
    Estimating set similarity and detecting highly similar sets are fundamental problems in areas such as databases, machine learning, and information retrieval. MinHash is a well-known technique for approximating Jaccard similarity of sets and has been successfully used for many applications such as similarity search and large scale learning. Its two compressed versions, b-bit MinHash and Odd Sketch, can significantly reduce the memory usage of the original MinHash method, especially for estimating high similarities (i.e., similarities around 1). Although MinHash can be applied to static sets as well as streaming sets, of which elements are given in a streaming fashion and cardinality is unknown or even infinite, unfortunately, b-bit MinHash and Odd Sketch fail to deal with streaming data. To solve this problem, we design a memory efficient sketch method, MaxLogHash, to accurately estimate Jaccard similarities in streaming sets. Compared to MinHash, our method uses smaller sized registers (each register consists of less than 7 bits) to build a compact sketch for each set. We also provide a simple yet accurate estimator for inferring Jaccard similarity from MaxLogHash sketches. In addition, we derive formulas for bounding the estimation error and determine the smallest necessary memory usage (i.e., the number of registers used for a MaxLogHash sketch) for the desired accuracy. We conduct experiments on a variety of datasets, and experimental results show that our method MaxLogHash is about 5 times more memory efficient than MinHash with the same accuracy and computational cost for estimating high similarities
    • …
    corecore