17,794 research outputs found

    Distributed Temporal Link Prediction Algorithm Based on Label Propagation

    Get PDF
    Link prediction has steadily become an important research topic in the area of complex networks. However, the current link prediction algorithms typically neglect the evolution process and they tend to exhibit low accuracy and scalability when applied to large-scale networks. In this article, we propose a novel distributed temporal link prediction algorithm based on label propagation (DTLPLP), governed by the dynamical properties of the interactions between nodes. In particular, nodes are associated with labels, which include details of their sources, and the corresponding similarity value. When such labels are propagated across neighbouring nodes, they are updated based on the weights of the incident links, and the values from same source nodes are aggregated to evaluate the scores of links in the predicted network. Furthermore, DTLPLP has been designed to be distributed and parallelised, and thus suitable for large-scale network analysis. As part of the validation process, we have designed a prototype system developed in Pregel, which is a distributed network analysis framework. Experiments are conducted on the Enron e-mails and the General Relativity and Quantum Cosmology Scientific Collaboration networks. The experimental results show that compared to the most of link prediction algorithms, DTLPLP offers enhanced accuracy, stability and scalability

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Partially Blind Handovers for mmWave New Radio Aided by Sub-6 GHz LTE Signaling

    Full text link
    For a base station that supports cellular communications in sub-6 GHz LTE and millimeter (mmWave) bands, we propose a supervised machine learning algorithm to improve the success rate in the handover between the two radio frequencies using sub-6 GHz and mmWave prior channel measurements within a temporal window. The main contributions of our paper are to 1) introduce partially blind handovers, 2) employ machine learning to perform handover success predictions from sub-6 GHz to mmWave frequencies, and 3) show that this machine learning based algorithm combined with partially blind handovers can improve the handover success rate in a realistic network setup of colocated cells. Simulation results show improvement in handover success rates for our proposed algorithm compared to standard handover algorithms.Comment: (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work
    • …
    corecore