5,519 research outputs found

    Hill of Banchory Geothermal Energy Project Feasibility Study Report

    Get PDF
    This feasibility study explored the potential for a deep geothermal heat project at Hill of Banchory, Aberdeenshire. The geology of the Hill of Fare, to the north of Banchory, gives cause to believe it has good geothermal potential, while the Hill of Banchory heat network, situated on the northern side of the town, offers a ready-made heat customer. The partners in the consortium consisted of academics and developers with relevant expertise in deep geothermal energy, heat networks, and financial analysis, together with representatives of local Government. They conducted geological fieldwork around the Hill of Fare, engaged with local residents to establish their attitudes to geothermal energy, and built business models to predict the conditions under which the heat network at Hill of Banchory would be commercial if it utilised heat from the proposed geothermal well. They also estimated the potential carbon emission reductions that could be achieved by using deep geothermal energy, both at Hill of Banchory and more widely

    Hydrogeological challenges in a low carbon economy

    Get PDF
    Hydrogeology has traditionally been regarded as the province of the water industry, but it is increasingly finding novel applications in the energy sector. Hydrogeology has a longstanding role in geothermal energy exploration and management. Although aquifer management methods can be directly applied to most high-enthalpy geothermal reservoirs, hydrogeochemical inference techniques differ somewhat owing to peculiarities of high-temperature processes. Hydrogeological involvement in the development of ground-coupled heating and cooling systems using heat pumps has led to the emergence of the sub-discipline now known as thermogeology. The patterns of groundwater flow and heat transport are closely analogous and can thus be analysed using very similar techniques. Without resort to heat pumps, groundwater is increasingly being pumped to provide cooling for large buildings; the renewability of such systems relies on accurate prediction and management of thermal breakthrough from reinjection to production boreholes. Hydrogeological analysis can contribute to quantification of accidental carbon emissions arising from disturbance of groundwater-fed peatland ecosystems during wind farm construction. Beyond renewables, key applications of hydrogeology are to be found in the nuclear sector, and in the sunrise industries of unconventional gas and carbon capture and storage, with high temperatures attained during underground coal gasification requiring geothermal technology transfer

    District heating and cooling optimization and enhancement – towards integration of renewables, storage and smart grid

    Get PDF
    District heating and cooling (DHC) systems are attracting increased interest for their low carbon potential. However, most DHC systems are not operating at the expected performance level. Optimization and Enhancement of DHC networks to reduce (a) fossil fuel consumption, CO2 emission, and heat losses across the network, while (b) increasing return on investment, form key challenges faced by decision makers in the fast developing energy landscape. While the academic literature is abundant of research based on field experiments, simulations, optimization strategies and algorithms etc., there is a lack of a comprehensive review that addresses the multi-faceted dimensions of the optimization and enhancement of DHC systems with a view to promote integration of smart grids, energy storage and increased share of renewable energy. The paper focuses on four areas: energy generation, energy distribution, heat substations, and terminal users, identifying state-of-the-art methods and solutions, while paving the way for future research
    • …
    corecore