1,856 research outputs found

    Rank-Two Beamforming and Power Allocation in Multicasting Relay Networks

    Full text link
    In this paper, we propose a novel single-group multicasting relay beamforming scheme. We assume a source that transmits common messages via multiple amplify-and-forward relays to multiple destinations. To increase the number of degrees of freedom in the beamforming design, the relays process two received signals jointly and transmit the Alamouti space-time block code over two different beams. Furthermore, in contrast to the existing relay multicasting scheme of the literature, we take into account the direct links from the source to the destinations. We aim to maximize the lowest received quality-of-service by choosing the proper relay weights and the ideal distribution of the power resources in the network. To solve the corresponding optimization problem, we propose an iterative algorithm which solves sequences of convex approximations of the original non-convex optimization problem. Simulation results demonstrate significant performance improvements of the proposed methods as compared with the existing relay multicasting scheme of the literature and an algorithm based on the popular semidefinite relaxation technique

    Frame Based Precoding in Satellite Communications: A Multicast Approach

    Get PDF
    In the present work, a multibeam satellite that employs aggressive frequency reuse towards increasing the offered throughput is considered. Focusing on the forward link, the goal is to employ multi-antenna signal processing techniques, namely linear precoding, to manage the inter-beam interferences. In this context, fundamental practical limitations, namely the rigid framing structure of satellite communication standards and the on-board per-antenna power constraints, are herein considered. Therefore, the concept of optimal frame based precoding under per-antenna constraints, is discussed. This consists in precoding the transmit signals without changing the underlying framing structure of the communication standard. In the present work, the connection of the frame based precoding problem with the generic signal processing problem of conveying independent sets of common data to distinct groups of users is established. This model is known as physical layer multicasting to multiple co-channel groups. Building on recent results, the weighted fair per-antenna power constrained multigroup multicast precoders are employed for frame based precoding. The throughput performance of these solutions is compared to multicast aware heuristic precoding methods over a realistic multibeam satellite scenario. Consequently, the gains of the proposed approach are quantified via extensive numerical results.Comment: Accepted for presentation at the IEEE ASMS 201

    Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Full text link
    Linear precoding exploits the spatial degrees of freedom offered by multi-antenna transmitters to serve multiple users over the same frequency resources. The present work focuses on simultaneously serving multiple groups of users, each with its own channel, by transmitting a stream of common symbols to each group. This scenario is known as physical layer multicasting to multiple co-channel groups. Extending the current state of the art in multigroup multicasting, the practical constraint of a maximum permitted power level radiated by each antenna is tackled herein. The considered per antenna power constrained system is optimized in a maximum fairness sense. In other words, the optimization aims at favoring the worst user by maximizing the minimum rate. This Max-Min Fair criterion is imperative in multicast systems, where the performance of all the receivers listening to the same multicast is dictated by the worst rate in the group. An analytic framework to tackle the Max-Min Fair multigroup multicasting scenario under per antenna power constraints is therefore derived. Numerical results display the accuracy of the proposed solution and provide insights to the performance of a per antenna power constrained system.Comment: Presented in IEEE ICC 2014, Sydney, AUS. arXiv admin note: substantial text overlap with arXiv:1406.755

    Weighted Fair Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is considered. This model is known as physical layer multicasting to multiple co-channel groups. In this context, the practical constraint of a maximum permitted power level radiated by each antenna is addressed. The per-antenna power constrained system is optimized in a maximum fairness sense with respect to predetermined quality of service weights. In other words, the worst scaled user is boosted by maximizing its weighted signal-to-interference plus noise ratio. A detailed solution to tackle the weighted max-min fair multigroup multicast problem under per-antenna power constraints is therefore derived. The implications of the novel constraints are investigated via prominent applications and paradigms. What is more, robust per-antenna constrained multigroup multicast beamforming solutions are proposed. Finally, an extensive performance evaluation quantifies the gains of the proposed algorithm over existing solutions and exhibits its accuracy over per-antenna power constrained systems.Comment: Under review in IEEE Transactions in Signal Processin

    Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems

    Full text link
    Physical layer multicasting with opportunistic user selection (OUS) is examined for multicell multi-antenna wireless systems. By adopting a two-layer encoding scheme, a rate-adaptive channel code is applied in each fading block to enable successful decoding by a chosen subset of users (which varies over different blocks) and an application layer erasure code is employed across multiple blocks to ensure that every user is able to recover the message after decoding successfully in a sufficient number of blocks. The transmit signal and code-rate in each block determine opportunistically the subset of users that are able to successfully decode and can be chosen to maximize the long-term multicast efficiency. The employment of OUS not only helps avoid rate-limitations caused by the user with the worst channel, but also helps coordinate interference among different cells and multicast groups. In this work, efficient algorithms are proposed for the design of the transmit covariance matrices, the physical layer code-rates, and the target user subsets in each block. In the single group scenario, the system parameters are determined by maximizing the group-rate, defined as the physical layer code-rate times the fraction of users that can successfully decode in each block. In the multi-group scenario, the system parameters are determined by considering a group-rate balancing optimization problem, which is solved by a successive convex approximation (SCA) approach. To further reduce the feedback overhead, we also consider the case where only part of the users feed back their channel vectors in each block and propose a design based on the balancing of the expected group-rates. In addition to SCA, a sample average approximation technique is also introduced to handle the probabilistic terms arising in this problem. The effectiveness of the proposed schemes is demonstrated by computer simulations.Comment: Accepted by IEEE Transactions on Signal Processin
    • …
    corecore