1,508 research outputs found

    Low-resource synchronous coincidence processor for positron emission tomography

    Get PDF
    We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs

    Distributed clock generator for synchronous SoC using ADPLL network

    Get PDF
    International audienceThis paper presents a novel architecture of on-chip clock generation employing a network of oscillators synchronized by the distributed all-digital PLLs (ADPLLs). The implemented prototype has 16 clocking domains operating synchronously in a frequency range of 1.1-2.4 GHz. The synchronization error between the neighboring clock domains is less than 60 ps. The fully digital architecture of the generation offers flexibility and efficient synchronization control suitable for use in synchronous SoCs

    Adaptive Latency Insensitive Protocols andElastic Circuits with Early Evaluation: A Comparative Analysis

    Get PDF
    AbstractLatency Insensitive Protocols (LIP) and Elastic Circuits (EC) solve the same problem of rendering a design tolerant to additional latencies caused by wires or computational elements. They are performance-limited by a firing semantics that enforces coherency through a lazy evaluation rule: Computation is enabled if all inputs to a block are simultaneously available. Adaptive LIP's (ALIP) and EC with early evaluation (ECEE) increase the performance by relaxing the evaluation rule: Computation is enabled as soon as the subset of inputs needed at a given time is available. Their difference in terms of implementation and behavior in selected cases justifies the need for the comparative analysis reported in this paper. Results have been obtained through simple examples, a single representative case-study already used in the context of both LIP's and EC and through extensive simulations over a suite of benchmarks

    Binding of Object Representations by Synchronous Cortical Dynamics Explains Temporal Order and Spatial Pooling Data

    Full text link
    A key problem in cognitive science concerns how the brain binds together parts of an object into a coherent visual object representation. One difficulty that this binding process needs to overcome is that different parts of an object may be processed by the brain at different rates and may thus become desynchronized. Perceptual framing is a mechanism that resynchronizes cortical activities corresponding to the same retinal object. A neural network model based on cooperation between oscillators via feedback from a subsequent processing stage is presented that is able to rapidly resynchronize desynchronized featural activities. Model properties help to explain perceptual framing data, including psychophysical data about temporal order judgments. These cooperative model interactions also simulate data concerning the reduction of threshold contrast as a function of stimulus length. The model hereby provides a unified explanation of temporal order and threshold contrast data as manifestations of a cortical binding process that can rapidly resynchronize image parts which belong together in visual object representations.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-92-J-0334, F49620-92-J-0499); Office of Naval Research (N00014-92- J-4015, N00014-91-J-4100

    NIKEL_AMC: Readout electronics for the NIKA2 experiment

    Full text link
    The New Iram Kid Arrays-2 (NIKA2) instrument has recently been installed at the IRAM 30 m telescope. NIKA2 is a state-of-art instrument dedicated to mm-wave astronomy using microwave kinetic inductance detectors (KID) as sensors. The three arrays installed in the camera, two at 1.25 mm and one at 2.05 mm, feature a total of 3300 KIDs. To instrument these large array of detectors, a specifically designed electronics, composed of 20 readout boards and hosted in three microTCA crates, has been developed. The implemented solution and the achieved performances are presented in this paper. We find that multiplexing factors of up to 400 detectors per board can be achieved with homogeneous performance across boards in real observing conditions, and a factor of more than 3 decrease in volume with respect to previous generations.Comment: 21 pages; 16 figure
    • 

    corecore