779 research outputs found

    Hierarchical Swarm Robotics

    Get PDF
    Distributed computing is becoming more and more prevalent in engineering today. Swarm robotics is simply an extension of that, not only dividing the computing power, but also the physical capabilities. This project served as a proof of concept investigation into the feasibility and potential effectiveness of a hierarchical swarm topology (HST), which better mimics the organization of many societal structures. This goal was approached by designing a three-tier robotic swarm as well as a specialized abstract coverage algorithm designed to map an unknown area. Experiments were conducted by modifying various parameters of an HST including the number of tiers and robots per tier. Results supported the original hypothesis that by adding robots, overall runtime and individual workload is reduced

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    A Decomposition Strategy for Optimal Coverage of an Area of Interest using Heterogeneous Team of UAVs

    Get PDF
    In this thesis, we study the problem of optimal search and coverage with heterogeneous team of unmanned aerial vehicles (UAVs). The team must complete the coverage of a given region while minimizing the required time and fuel for performing the mission. Since the UAVs have different characteristics one needs to equalize the ratio of the task to the capabilities of each agent to obtain an optimal solution. A multi-objective task assignment framework is developed for finding the best group of agents that by assigning the optimal tasks would carry out the mission with minimum total cost. Once the optimal tasks for UAVs are obtained, the coverage area (map) is partitioned according to the results of the multi-objective task assignment. The strategy is to partition the coverage area into separate regions so that each agent is responsible for performing the surveillance of its particular region. The decentralized power diagram algorithm is used to partition the map according to the results of the task assignment phase. Furthermore, a framework for solving the task assignment problem and the coverage area partitioning problem in parallel is proposed. A criterion for achieving the minimum number of turns in covering a region a with single UAV is studied for choosing the proper path direction for each UAV. This criterion is extended to develop a method for partitioning the coverage area among multiple UAVs that minimizes the number of turns. We determine the "best" team for performing the coverage mission and we find the optimal workload for each agent that is involved in the mission through a multi-objective optimization procedure. The search area is then partitioned into disjoint subregions, and each agent is assigned to a region having an optimum area resulting in the minimum cost for the entire surveillance mission
    • …
    corecore