131,231 research outputs found

    Distributed Delayed Stochastic Optimization

    Full text link
    We analyze the convergence of gradient-based optimization algorithms that base their updates on delayed stochastic gradient information. The main application of our results is to the development of gradient-based distributed optimization algorithms where a master node performs parameter updates while worker nodes compute stochastic gradients based on local information in parallel, which may give rise to delays due to asynchrony. We take motivation from statistical problems where the size of the data is so large that it cannot fit on one computer; with the advent of huge datasets in biology, astronomy, and the internet, such problems are now common. Our main contribution is to show that for smooth stochastic problems, the delays are asymptotically negligible and we can achieve order-optimal convergence results. In application to distributed optimization, we develop procedures that overcome communication bottlenecks and synchronization requirements. We show nn-node architectures whose optimization error in stochastic problems---in spite of asynchronous delays---scales asymptotically as \order(1 / \sqrt{nT}) after TT iterations. This rate is known to be optimal for a distributed system with nn nodes even in the absence of delays. We additionally complement our theoretical results with numerical experiments on a statistical machine learning task.Comment: 27 pages, 4 figure

    SCOPE: Scalable Composite Optimization for Learning on Spark

    Full text link
    Many machine learning models, such as logistic regression~(LR) and support vector machine~(SVM), can be formulated as composite optimization problems. Recently, many distributed stochastic optimization~(DSO) methods have been proposed to solve the large-scale composite optimization problems, which have shown better performance than traditional batch methods. However, most of these DSO methods are not scalable enough. In this paper, we propose a novel DSO method, called \underline{s}calable \underline{c}omposite \underline{op}timization for l\underline{e}arning~({SCOPE}), and implement it on the fault-tolerant distributed platform \mbox{Spark}. SCOPE is both computation-efficient and communication-efficient. Theoretical analysis shows that SCOPE is convergent with linear convergence rate when the objective function is convex. Furthermore, empirical results on real datasets show that SCOPE can outperform other state-of-the-art distributed learning methods on Spark, including both batch learning methods and DSO methods

    Distributed Coupled Multi-Agent Stochastic Optimization

    Full text link
    This work develops effective distributed strategies for the solution of constrained multi-agent stochastic optimization problems with coupled parameters across the agents. In this formulation, each agent is influenced by only a subset of the entries of a global parameter vector or model, and is subject to convex constraints that are only known locally. Problems of this type arise in several applications, most notably in disease propagation models, minimum-cost flow problems, distributed control formulations, and distributed power system monitoring. This work focuses on stochastic settings, where a stochastic risk function is associated with each agent and the objective is to seek the minimizer of the aggregate sum of all risks subject to a set of constraints. Agents are not aware of the statistical distribution of the data and, therefore, can only rely on stochastic approximations in their learning strategies. We derive an effective distributed learning strategy that is able to track drifts in the underlying parameter model. A detailed performance and stability analysis is carried out showing that the resulting coupled diffusion strategy converges at a linear rate to an O(μ)−O(\mu)-neighborhood of the true penalized optimizer
    • …
    corecore