698 research outputs found

    A Unifying Theory for Graph Transformation

    Get PDF
    The field of graph transformation studies the rule-based transformation of graphs. An important branch is the algebraic graph transformation tradition, in which approaches are defined and studied using the language of category theory. Most algebraic graph transformation approaches (such as DPO, SPO, SqPO, and AGREE) are opinionated about the local contexts that are allowed around matches for rules, and about how replacement in context should work exactly. The approaches also differ considerably in their underlying formal theories and their general expressiveness (e.g., not all frameworks allow duplication). This dissertation proposes an expressive algebraic graph transformation approach, called PBPO+, which is an adaptation of PBPO by Corradini et al. The central contribution is a proof that PBPO+ subsumes (under mild restrictions) DPO, SqPO, AGREE, and PBPO in the important categorical setting of quasitoposes. This result allows for a more unified study of graph transformation metatheory, methods, and tools. A concrete example of this is found in the second major contribution of this dissertation: a graph transformation termination method for PBPO+, based on decreasing interpretations, and defined for general categories. By applying the proposed encodings into PBPO+, this method can also be applied for DPO, SqPO, AGREE, and PBPO

    Formally verified animation for RoboChart using interaction trees

    Get PDF
    RoboChart is a core notation in the RoboStar framework. It is a timed and probabilistic domain-specific and state machine-based language for robotics. RoboChart supports shared variables and communication across entities in its component model. It has formal denotational semantics given in CSP. The semantic technique of Interaction Trees (ITrees) represents behaviours of reactive and concurrent programs interacting with their environments. Recent mechanisation of ITrees, ITree-based CSP semantics and a Z mathematical toolkit in Isabelle/HOL bring new applications of verification and animation for state-rich process languages, such as RoboChart. In this paper, we use ITrees to give RoboChart novel operational semantics, implement it in Isabelle, and use Isabelle’s code generator to generate verified and executable animations. We illustrate our approach using an autonomous chemical detector and patrol robot models, exhibiting nondeterminism and using shared variables. With animation, we show two concrete scenarios for the chemical detector when the robot encounters different environmental inputs and three for the patrol robot when its calibrated position is in other corridor sections. We also verify that the animated scenarios are trace refinements of the CSP denotational semantics of the RoboChart models using FDR, a refinement model checker for CSP. This ensures that our approach to resolve nondeterminism using CSP operators with priority is sound and correct

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!)

    Get PDF
    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!

    The Quantum Monadology

    Full text link
    The modern theory of functional programming languages uses monads for encoding computational side-effects and side-contexts, beyond bare-bone program logic. Even though quantum computing is intrinsically side-effectful (as in quantum measurement) and context-dependent (as on mixed ancillary states), little of this monadic paradigm has previously been brought to bear on quantum programming languages. Here we systematically analyze the (co)monads on categories of parameterized module spectra which are induced by Grothendieck's "motivic yoga of operations" -- for the present purpose specialized to HC-modules and further to set-indexed complex vector spaces. Interpreting an indexed vector space as a collection of alternative possible quantum state spaces parameterized by quantum measurement results, as familiar from Proto-Quipper-semantics, we find that these (co)monads provide a comprehensive natural language for functional quantum programming with classical control and with "dynamic lifting" of quantum measurement results back into classical contexts. We close by indicating a domain-specific quantum programming language (QS) expressing these monadic quantum effects in transparent do-notation, embeddable into the recently constructed Linear Homotopy Type Theory (LHoTT) which interprets into parameterized module spectra. Once embedded into LHoTT, this should make for formally verifiable universal quantum programming with linear quantum types, classical control, dynamic lifting, and notably also with topological effects.Comment: 120 pages, various figure

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    A unifying mathematical definition enables the theoretical study of the algorithmic class of particle methods.

    Get PDF
    Mathematical definitions provide a precise, unambiguous way to formulate concepts. They also provide a common language between disciplines. Thus, they are the basis for a well-founded scientific discussion. In addition, mathematical definitions allow for deeper insights into the defined subject based on mathematical theorems that are incontrovertible under the given definition. Besides their value in mathematics, mathematical definitions are indispensable in other sciences like physics, chemistry, and computer science. In computer science, they help to derive the expected behavior of a computer program and provide guidance for the design and testing of software. Therefore, mathematical definitions can be used to design and implement advanced algorithms. One class of widely used algorithms in computer science is the class of particle-based algorithms, also known as particle methods. Particle methods can solve complex problems in various fields, such as fluid dynamics, plasma physics, or granular flows, using diverse simulation methods, including Discrete Element Methods (DEM), Molecular Dynamics (MD), Reproducing Kernel Particle Methods (RKPM), Particle Strength Exchange (PSE), and Smoothed Particle Hydrodynamics (SPH). Despite the increasing use of particle methods driven by improved computing performance, the relation between these algorithms remains formally unclear. In particular, particle methods lack a unifying mathematical definition and precisely defined terminology. This prevents the determination of whether an algorithm belongs to the class and what distinguishes the class. Here we present a rigorous mathematical definition for determining particle methods and demonstrate its importance by applying it to several canonical algorithms and those not previously recognized as particle methods. Furthermore, we base proofs of theorems about parallelizability and computational power on it and use it to develop scientific computing software. Our definition unified, for the first time, the so far loosely connected notion of particle methods. Thus, it marks the necessary starting point for a broad range of joint formal investigations and applications across fields.:1 Introduction 1.1 The Role of Mathematical Definitions 1.2 Particle Methods 1.3 Scope and Contributions of this Thesis 2 Terminology and Notation 3 A Formal Definition of Particle Methods 3.1 Introduction 3.2 Definition of Particle Methods 3.2.1 Particle Method Algorithm 3.2.2 Particle Method Instance 3.2.3 Particle State Transition Function 3.3 Explanation of the Definition of Particle Methods 3.3.1 Illustrative Example 3.3.2 Explanation of the Particle Method Algorithm 3.3.3 Explanation of the Particle Method Instance 3.3.4 Explanation of the State Transition Function 3.4 Conclusion 4 Algorithms as Particle Methods 4.1 Introduction 4.2 Perfectly Elastic Collision in Arbitrary Dimensions 4.3 Particle Strength Exchange 4.4 Smoothed Particle Hydrodynamics 4.5 Lennard-Jones Molecular Dynamics 4.6 Triangulation refinement 4.7 Conway's Game of Life 4.8 Gaussian Elimination 4.9 Conclusion 5 Parallelizability of Particle Methods 5.1 Introduction 5.2 Particle Methods on Shared Memory Systems 5.2.1 Parallelization Scheme 5.2.2 Lemmata 5.2.3 Parallelizability 5.2.4 Time Complexity 5.2.5 Application 5.3 Particle Methods on Distributed Memory Systems 5.3.1 Parallelization Scheme 5.3.2 Lemmata 5.3.3 Parallelizability 5.3.4 Bounds on Time Complexity and Parallel Scalability 5.4 Conclusion 6 Turing Powerfulness and Halting Decidability 6.1 Introduction 6.2 Turing Machine 6.3 Turing Powerfulness of Particle Methods Under a First Set of Constraints 6.4 Turing Powerfulness of Particle Methods Under a Second Set of Constraints 6.5 Halting Decidability of Particle Methods 6.6 Conclusion 7 Particle Methods as a Basis for Scientific Software Engineering 7.1 Introduction 7.2 Design of the Prototype 7.3 Applications, Comparisons, Convergence Study, and Run-time Evaluations 7.4 Conclusion 8 Results, Discussion, Outlook, and Conclusion 8.1 Problem 8.2 Results 8.3 Discussion 8.4 Outlook 8.5 Conclusio

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics
    corecore