3,213 research outputs found

    Resource-aware Programming in a High-level Language - Improved performance with manageable effort on clustered MPSoCs

    Get PDF
    Bis 2001 bedeutete Moores und Dennards Gesetz eine Verdoppelung der Ausführungszeit alle 18 Monate durch verbesserte CPUs. Heute ist Nebenläufigkeit das dominante Mittel zur Beschleunigung von Supercomputern bis zu mobilen Geräten. Allerdings behindern neuere Phänomene wie "Dark Silicon" zunehmend eine weitere Beschleunigung durch Hardware. Um weitere Beschleunigung zu erreichen muss sich auch die Soft­ware mehr ihrer Hardware Resourcen gewahr werden. Verbunden mit diesem Phänomen ist eine immer heterogenere Hardware. Supercomputer integrieren Beschleuniger wie GPUs. Mobile SoCs (bspw. Smartphones) integrieren immer mehr Fähigkeiten. Spezialhardware auszunutzen ist eine bekannte Methode, um den Energieverbrauch zu senken, was ein weiterer wichtiger Aspekt ist, welcher mit der reinen Geschwindigkeit abgewogen werde muss. Zum Beispiel werden Supercomputer auch nach "Performance pro Watt" bewertet. Zur Zeit sind systemnahe low-level Programmierer es gewohnt über Hardware nachzudenken, während der gemeine high-level Programmierer es vorzieht von der Plattform möglichst zu abstrahieren (bspw. Cloud). "High-level" bedeutet nicht, dass Hardware irrelevant ist, sondern dass sie abstrahiert werden kann. Falls Sie eine Java-Anwendung für Android entwickeln, kann der Akku ein wichtiger Aspekt sein. Irgendwann müssen aber auch Hochsprachen resourcengewahr werden, um Geschwindigkeit oder Energieverbrauch zu verbessern. Innerhalb des Transregio "Invasive Computing" habe ich an diesen Problemen gearbeitet. In meiner Dissertation stelle ich ein Framework vor, mit dem man Hochsprachenanwendungen resourcengewahr machen kann, um so die Leistung zu verbessern. Das könnte beispielsweise erhöhte Effizienz oder schnellerer Ausführung für das System als Ganzes bringen. Ein Kerngedanke dabei ist, dass Anwendungen sich nicht selbst optimieren. Stattdessen geben sie alle Informationen an das Betriebssystem. Das Betriebssystem hat eine globale Sicht und trifft Entscheidungen über die Resourcen. Diesen Prozess nennen wir "Invasion". Die Aufgabe der Anwendung ist es, sich an diese Entscheidungen anzupassen, aber nicht selbst welche zu fällen. Die Herausforderung besteht darin eine Sprache zu definieren, mit der Anwendungen Resourcenbedingungen und Leistungsinformationen kommunizieren. So eine Sprache muss ausdrucksstark genug für komplexe Informationen, erweiterbar für neue Resourcentypen, und angenehm für den Programmierer sein. Die zentralen Beiträge dieser Dissertation sind: Ein theoretisches Modell der Resourcen-Verwaltung, um die Essenz des resourcengewahren Frameworks zu beschreiben, die Korrektheit der Entscheidungen des Betriebssystems bezüglich der Bedingungen einer Anwendung zu begründen und zum Beweis meiner Thesen von Effizienz und Beschleunigung in der Theorie. Ein Framework und eine Übersetzungspfad resourcengewahrer Programmierung für die Hochsprache X10. Zur Bewertung des Ansatzes haben wir Anwendungen aus dem High Performance Computing implementiert. Eine Beschleunigung von 5x konnte gemessen werden. Ein Speicherkonsistenzmodell für die X10 Programmiersprache, da dies ein notwendiger Schritt zu einer formalen Semantik ist, die das theoretische Modell und die konkrete Implementierung verknüpft. Zusammengefasst zeige ich, dass resourcengewahre Programmierung in Hoch\-sprachen auf zukünftigen Architekturen mit vielen Kernen mit vertretbarem Aufwand machbar ist und die Leistung verbessert

    Invasive Computing in HPC with X10

    Get PDF
    High performance computing with thousands of cores relies on distributed memory due to memory consistency reasons. The resource management on such systems usually relies on static assignment of resources at the start of each application. Such a static scheduling is incapable of starting applications with required resources being used by others since a reduction of resources assigned to applications without stopping them is not possible. This lack of dynamic adaptive scheduling leads to idling resources until the remaining amount of requested resources gets available. Additionally, applications with changing resource requirements lead to idling or less efficiently used resources. The invasive computing paradigm suggests dynamic resource scheduling and applications able to dynamically adapt to changing resource requirements. As a case study, we developed an invasive resource manager as well as a multigrid with dynamically changing resource demands. Such a multigrid has changing scalability behavior during its execution and requires data migration upon reallocation due to distributed memory systems. To counteract the additional complexity introduced by the additional interfaces, e. g. for data migration, we use the X10 programming language for improved programmability. Our results show improved application throughput and the dynamic adaptivity. In addition, we show our extension for the distributed arrays of X10 to support data migrationThis work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre “Invasive Computing” (SFB/TR 89)

    Enhancing the performance of malleable MPI applications by using performance-aware dynamic reconfiguration

    Get PDF
    The work in this paper focuses on providing malleability to MPI applications by using a novel performance-aware dynamic reconfiguration technique. This paper describes the design and implementation of Flex-MPI, an MPI library extension which can automatically monitor and predict the performance of applications, balance and redistribute the workload, and reconfigure the application at runtime by changing the number of processes. Unlike existent approaches, our reconfiguring policy is guided by user-defined performance criteria. We focus on iterative SPMD programs, a class of applications with critical mass within the scientific community. Extensive experiments show that Flex-MPI can improve the performance, parallel efficiency, and cost-efficiency of MPI programs with a minimal effort from the programmer.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the project TIN2013- 41350-P, Scalable Data Management Techniques for High-End Computing Systems, and EU under the COST Program Action IC1305, Network for Sustainable Ultrascale Computing (NESUS)Peer ReviewedPostprint (author's final draft

    Communication models insights meet simulations

    Get PDF
    International audienceIt is well-known that taking into account communications while scheduling jobs in large scale parallel computing platforms is a crucial issue. In modern hierarchical platforms, communication times are highly different when occurring inside a cluster or between clusters. Thus, allocating the jobs taking into account locality constraints is a key factor for reaching good performances. However, several theoretical results prove that imposing such constraints reduces the solution space and thus, possibly degrades the performances. In practice, such constraints simplify implementations and most often lead to better results. Our aim in this work is to bridge theoretical and practical intuitions, and check the differences between constrained and unconstrained schedules (namely with respect to locality and node contiguity) through simulations. We have developped a generic tool, using SimGrid as the base simulator, enabling interactions with external batch schedulers to evaluate their scheduling policies. The results confirm that insights gained through theoretical models are ill-suited to current architectures and should be reevaluated

    Methods to Improve Applicability and Efficiency of Distributed Data-Centric Compute Frameworks

    Get PDF
    The success of modern applications depends on the insights they collect from their data repositories. Data repositories for such applications currently exceed exabytes and are rapidly increasing in size, as they collect data from varied sources - web applications, mobile phones, sensors and other connected devices. Distributed storage and data-centric compute frameworks have been invented to store and analyze these large datasets. This dissertation focuses on extending the applicability and improving the efficiency of distributed data-centric compute frameworks
    corecore