70,694 research outputs found

    Task allocation in group of nodes in the IoT: A consensus approach

    Get PDF
    The realization of the Internet of Things (IoT) paradigm relies on the implementation of systems of cooperative intelligent objects with key interoperability capabilities. In order for objects to dynamically cooperate to IoT applications' execution, they need to make their resources available in a flexible way. However, available resources such as electrical energy, memory, processing, and object capability to perform a given task, are often limited. Therefore, resource allocation that ensures the fulfilment of network requirements is a critical challenge. In this paper, we propose a distributed optimization protocol based on consensus algorithm, to solve the problem of resource allocation and management in IoT heterogeneous networks. The proposed protocol is robust against links or nodes failures, so it's adaptive in dynamic scenarios where the network topology changes in runtime. We consider an IoT scenario where nodes involved in the same IoT task need to adjust their task frequency and buffer occupancy. We demonstrate that, using the proposed protocol, the network converges to a solution where resources are homogeneously allocated among nodes. Performance evaluation of experiments in simulation mode and in real scenarios show that the algorithm converges with a percentage error of about±5% with respect to the optimal allocation obtainable with a centralized approach

    Radio Resource Allocation in LTE-Advanced Cellular Networks with M2M Communications

    Full text link
    Machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines without the need of human intervention. To support such a large number of autonomous devices, the M2M system architecture needs to be extremely power and spectrally efficient. This article thus briefly reviews the features of M2M services in the third generation (3G) long-term evolution and its advancement (LTE-Advanced) networks. Architectural enhancements are then presented for supporting M2M services in LTE-Advanced cellular networks. To increase spectral efficiency, the same spectrum is expected to be utilized for human-to-human (H2H) communications as well as M2M communications. We therefore present various radio resource allocation schemes and quantify their utility in LTE-Advanced cellular networks. System-level simulation results are provided to validate the performance effectiveness of M2M communications in LTE-Advanced cellular networks

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    Hypergraph Theory: Applications in 5G Heterogeneous Ultra-Dense Networks

    Full text link
    Heterogeneous ultra-dense network (HUDN) can significantly increase the spectral efficiency of cellular networks and cater for the explosive growth of data traffic in the fifth-generation (5G) communications. Due to the dense deployment of small cells (SCs), interference among neighboring cells becomes severe. As a result, the effective resource allocation and user association algorithms are essential to minimize inter-cell interference and optimize network performance. However, optimizing network resources in HUDN is extremely complicated as resource allocation and user association are coupled. Therefore, HUDN requires low-complexity but effective resource allocation schemes to address these issues. Hypergraph theory has been recognized as a useful mathematical tool to model the complex relations among multiple entities. In this article, we show how the hypergraph models can be used to effectively tackle resource allocation problems in HUDN. We also discuss several potential research issues in this field

    Relay Assisted Device-to-Device Communication: Approaches and Issues

    Full text link
    Enabling technologies for 5G and future wireless communication have attracted the interest of industry and research communities. One of such technologies is Device-to-Device (D2D) communication which exploits user proximity to offer spectral efficiency, energy efficiency and increased throughput. Data offloading, public safety communication, context aware communication and content sharing are some of the use cases for D2D communication. D2D communication can be direct or through a relay depending on the nature of the channel in between the D2D devices. Apart from the problem of interference, a key challenge of relay aided D2D communication is appropriately assigning relays to a D2D pair while maintaining the QoS requirement of the cellular users. In this article, relay assisted D2D communication is reviewed and research issues are highlighted. We also propose matching theory with incomplete information for relay allocation considering uncertainties which the mobility of the relay introduces to the set up

    The edge cloud: A holistic view of communication, computation and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth generation (5G) communication networks. This ambitious goal requires a paradigm shift towards a vision that looks at communication, computation and caching (3C) resources as three components of a single holistic system. The further step is to bring these 3C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques.Comment: to appear in the book "Cooperative and Graph Signal Pocessing: Principles and Applications", P. Djuric and C. Richard Eds., Academic Press, Elsevier, 201

    Aqua Computing: Coupling Computing and Communications

    Full text link
    The authors introduce a new vision for providing computing services for connected devices. It is based on the key concept that future computing resources will be coupled with communication resources, for enhancing user experience of the connected users, and also for optimising resources in the providers' infrastructures. Such coupling is achieved by Joint/Cooperative resource allocation algorithms, by integrating computing and communication services and by integrating hardware in networks. Such type of computing, by which computing services are not delivered independently but dependent of networking services, is named Aqua Computing. The authors see Aqua Computing as a novel approach for delivering computing resources to end devices, where computing power of the devices are enhanced automatically once they are connected to an Aqua Computing enabled network. The process of resource coupling is named computation dissolving. Then, an Aqua Computing architecture is proposed for mobile edge networks, in which computing and wireless networking resources are allocated jointly or cooperatively by a Mobile Cloud Controller, for the benefit of the end-users and/or for the benefit of the service providers. Finally, a working prototype of the system is shown and the gathered results show the performance of the Aqua Computing prototype.Comment: A shorter version of this paper will be submitted to an IEEE magazin

    White Paper on Critical and Massive Machine Type Communication Towards 6G

    Full text link
    The society as a whole, and many vertical sectors in particular, is becoming increasingly digitalized. Machine Type Communication (MTC), encompassing its massive and critical aspects, and ubiquitous wireless connectivity are among the main enablers of such digitization at large. The recently introduced 5G New Radio is natively designed to support both aspects of MTC to promote the digital transformation of the society. However, it is evident that some of the more demanding requirements cannot be fully supported by 5G networks. Alongside, further development of the society towards 2030 will give rise to new and more stringent requirements on wireless connectivity in general, and MTC in particular. Driven by the societal trends towards 2030, the next generation (6G) will be an agile and efficient convergent network serving a set of diverse service classes and a wide range of key performance indicators (KPI). This white paper explores the main drivers and requirements of an MTC-optimized 6G network, and discusses the following six key research questions: - Will the main KPIs of 5G continue to be the dominant KPIs in 6G; or will there emerge new key metrics? - How to deliver different E2E service mandates with different KPI requirements considering joint-optimization at the physical up to the application layer? - What are the key enablers towards designing ultra-low power receivers and highly efficient sleep modes? - How to tackle a disruptive rather than incremental joint design of a massively scalable waveform and medium access policy for global MTC connectivity? - How to support new service classes characterizing mission-critical and dependable MTC in 6G? - What are the potential enablers of long term, lightweight and flexible privacy and security schemes considering MTC device requirements?Comment: White paper by http://www.6GFlagship.co

    Machine Intelligence Techniques for Next-Generation Context-Aware Wireless Networks

    Full text link
    The next generation wireless networks (i.e. 5G and beyond), which would be extremely dynamic and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), poses many critical challenges for network planning, operation, management and troubleshooting. At the same time, generation and consumption of wireless data are becoming increasingly distributed with ongoing paradigm shift from people-centric to machine-oriented communications, making the operation of future wireless networks even more complex. In mitigating the complexity of future network operation, new approaches of intelligently utilizing distributed computational resources with improved context-awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture aiming to distribute computing, storage, control, communication, and networking functions closer to end users, have a great potential for enabling efficient operation of future wireless networks. These promising architectures make the adoption of artificial intelligence (AI) principles which incorporate learning, reasoning and decision-making mechanism, as natural choices for designing a tightly integrated network. Towards this end, this article provides a comprehensive survey on the utilization of AI integrating machine learning, data analytics and natural language processing (NLP) techniques for enhancing the efficiency of wireless network operation. In particular, we provide comprehensive discussion on the utilization of these techniques for efficient data acquisition, knowledge discovery, network planning, operation and management of the next generation wireless networks. A brief case study utilizing the AI techniques for this network has also been provided.Comment: ITU Special Issue N.1 The impact of Artificial Intelligence (AI) on communication networks and services, (To appear
    • …
    corecore