18,409 research outputs found

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity

    Full text link
    Social sensing services use humans as sensor carriers, sensor operators and sensors themselves in order to provide situation-awareness to applications. This promises to provide a multitude of benefits to the users, for example in the management of natural disasters or in community empowerment. However, current social sensing services depend on Internet connectivity since the services are deployed on central Cloud platforms. In many circumstances, Internet connectivity is constrained, for instance when a natural disaster causes Internet outages or when people do not have Internet access due to economical reasons. In this paper, we propose the emerging Fog Computing infrastructure to become a key-enabler of social sensing services in situations of constrained Internet connectivity. To this end, we develop a generic architecture and API of Fog-enabled social sensing services. We exemplify the usage of the proposed social sensing architecture on a number of concrete use cases from two different scenarios.Comment: Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ramachandran. 2017. The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity. In Proceedings of The 2nd International Workshop on Social Sensing, Pittsburgh, PA, USA, April 21 2017 (SocialSens'17), 6 page

    CLOSER: A Collaborative Locality-aware Overlay SERvice

    Get PDF
    Current Peer-to-Peer (P2P) file sharing systems make use of a considerable percentage of Internet Service Providers (ISPs) bandwidth. This paper presents the Collaborative Locality-aware Overlay SERvice (CLOSER), an architecture that aims at lessening the usage of expensive international links by exploiting traffic locality (i.e., a resource is downloaded from the inside of the ISP whenever possible). The paper proves the effectiveness of CLOSER by analysis and simulation, also comparing this architecture with existing solutions for traffic locality in P2P systems. While savings on international links can be attractive for ISPs, it is necessary to offer some features that can be of interest for users to favor a wide adoption of the application. For this reason, CLOSER also introduces a privacy module that may arouse the users' interest and encourage them to switch to the new architectur

    Scalable Peer-to-Peer Streaming for Live Entertainment Content

    Get PDF
    We present a system for streaming live entertainment content over the Internet originating from a single source to a scalable number of consumers without resorting to centralized or provider-provisioned resources. The system creates a peer-to-peer overlay network, which attempts to optimize use of existing capacity to ensure quality of service, delivering low startup delay and lag in playout of the live content. There are three main aspects of our solution: first, a swarming mechanism that constructs an overlay topology for minimizing propagation delays from the source to end consumers; second, a distributed overlay anycast system that uses a location-based search algorithm for peers to quickly find the closest peers in a given stream; and finally, a novel incentive mechanism that encourages peers to donate capacity even when the user is not actively consuming content
    corecore