1,234 research outputs found

    Multi-Robot Persistent Coverage in Complex Environments

    Get PDF
    Los recientes avances en robótica móvil y un creciente desarrollo de robots móviles asequibles han impulsado numerosas investigaciones en sistemas multi-robot. La complejidad de estos sistemas reside en el diseño de estrategias de comunicación, coordinación y controlpara llevar a cabo tareas complejas que un único robot no puede realizar. Una tarea particularmente interesante es la cobertura persistente, que pretende mantener cubierto en el tiempo un entorno con un equipo de robots moviles. Este problema tiene muchas aplicaciones como aspiración o limpieza de lugares en los que la suciedad se acumula constantemente, corte de césped o monitorización ambiental. Además, la aparición de vehículos aéreos no tripulados amplía estas aplicaciones con otras como la vigilancia o el rescate.Esta tesis se centra en el problema de cubrir persistentemente entornos progresivamente mas complejos. En primer lugar, proponemos una solución óptima para un entorno convexo con un sistema centralizado, utilizando programación dinámica en un horizonte temporalnito. Posteriormente nos centramos en soluciones distribuidas, que son más robustas, escalables y eficientes. Para solventar la falta de información global, presentamos un algoritmo de estimación distribuido con comunicaciones reducidas. Éste permite a los robots teneruna estimación precisa de la cobertura incluso cuando no intercambian información con todos los miembros del equipo. Usando esta estimación, proponemos dos soluciones diferentes basadas en objetivos de cobertura, que son los puntos del entorno en los que más se puedemejorar dicha cobertura. El primer método es un controlador del movimiento que combina un término de gradiente con un término que dirige a los robots hacia sus objetivos. Este método funciona bien en entornos convexos. Para entornos con algunos obstáculos, el segundométodo planifica trayectorias abiertas hasta los objetivos, que son óptimas en términos de cobertura. Finalmente, para entornos complejos no convexos, presentamos un algoritmo capaz de encontrar particiones equitativas para los robots. En dichas regiones, cada robotplanifica trayectorias de longitud finita a través de un grafo de caminos de tipo barrido.La parte final de la tesis se centra en entornos discretos, en los que únicamente un conjunto finito de puntos debe que ser cubierto. Proponemos una estrategia que reduce la complejidad del problema separándolo en tres subproblemas: planificación de trayectoriascerradas, cálculo de tiempos y acciones de cobertura y generación de un plan de equipo sin colisiones. Estos subproblemas más pequeños se resuelven de manera óptima. Esta solución se utiliza en último lugar para una novedosa aplicación como es el calentamiento por inducción doméstico con inductores móviles. En concreto, la adaptamos a las particularidades de una cocina de inducción y mostramos su buen funcionamiento en un prototipo real.Recent advances in mobile robotics and an increasing development of aordable autonomous mobile robots have motivated an extensive research in multi-robot systems. The complexity of these systems resides in the design of communication, coordination and control strategies to perform complex tasks that a single robot can not. A particularly interesting task is that of persistent coverage, that aims to maintain covered over time a given environment with a team of robotic agents. This problem is of interest in many applications such as vacuuming, cleaning a place where dust is continuously settling, lawn mowing or environmental monitoring. More recently, the apparition of useful unmanned aerial vehicles (UAVs) has encouraged the application of the coverage problem to surveillance and monitoring. This thesis focuses on the problem of persistently covering a continuous environment in increasingly more dicult settings. At rst, we propose a receding-horizon optimal solution for a centralized system in a convex environment using dynamic programming. Then we look for distributed solutions, which are more robust, scalable and ecient. To deal with the lack of global information, we present a communication-eective distributed estimation algorithm that allows the robots to have an accurate estimate of the coverage of the environment even when they can not exchange information with all the members of the team. Using this estimation, we propose two dierent solutions based on coverage goals, which are the points of the environment in which the coverage can be improved the most. The rst method is a motion controller, that combines a gradient term with a term that drives the robots to the goals, and which performs well in convex environments. For environments with some obstacles, the second method plans open paths to the goals that are optimal in terms of coverage. Finally, for complex, non-convex environments we propose a distributed algorithm to nd equitable partitions for the robots, i.e., with an amount of work proportional to their capabilities. To cover this region, each robot plans optimal, nite-horizon paths through a graph of sweep-like paths. The nal part of the thesis is devoted to discrete environment, in which only a nite set of points has to be covered. We propose a divide-and-conquer strategy to separate the problem to reduce its complexity into three smaller subproblem, which can be optimally solved. We rst plan closed paths through the points, then calculate the optimal coverage times and actions to periodically satisfy the coverage required by the points, and nally join together the individual plans of the robots into a collision-free team plan that minimizes simultaneous motions. This solution is eventually used for a novel application that is domestic induction heating with mobile inductors. We adapt it to the particular setting of a domestic hob and demonstrate that it performs really well in a real prototype.<br /

    Reinforcement Learning in Self Organizing Cellular Networks

    Get PDF
    Self-organization is a key feature as cellular networks densify and become more heterogeneous, through the additional small cells such as pico and femtocells. Self- organizing networks (SONs) can perform self-configuration, self-optimization, and self-healing. These operations can cover basic tasks such as the configuration of a newly installed base station, resource management, and fault management in the network. In other words, SONs attempt to minimize human intervention where they use measurements from the network to minimize the cost of installation, configuration, and maintenance of the network. In fact, SONs aim to bring two main factors in play: intelligence and autonomous adaptability. One of the main requirements for achieving such goals is to learn from sensory data and signal measurements in networks. Therefore, machine learning techniques can play a major role in processing underutilized sensory data to enhance the performance of SONs. In the first part of this dissertation, we focus on reinforcement learning as a viable approach for learning from signal measurements. We develop a general framework in heterogeneous cellular networks agnostic to the learning approach. We design multiple reward functions and study different effects of the reward function, Markov state model, learning rate, and cooperation methods on the performance of reinforcement learning in cellular networks. Further, we look into the optimality of reinforcement learning solutions and provide insights into how to achieve optimal solutions. In the second part of the dissertation, we propose a novel architecture based on spatial indexing for system-evaluation of heterogeneous 5G cellular networks. We develop an open-source platform based on the proposed architecture that can be used to study large scale directional cellular networks. The proposed platform is used for generating training data sets of accurate signal-to-interference-plus-noise-ratio (SINR) values in millimeter-wave communications for machine learning purposes. Then, with taking advantage of the developed platform, we look into dense millimeter-wave networks as one of the key technologies in 5G cellular networks. We focus on topology management of millimeter-wave backhaul networks and study and provide multiple insights on the evaluation and selection of proper performance metrics in dense millimeter-wave networks. Finally, we finish this part by proposing a self-organizing solution to achieve k-connectivity via reinforcement learning in the topology management of wireless networks

    An event-driven approach to control and optimization of multi-agent systems

    Get PDF
    This dissertation studies the application of several event-driven control schemes in multi-agent systems. First, a new cooperative receding horizon (CRH) controller is designed and applied to a class of maximum reward collection problems. Target rewards are time-variant with finite deadlines and the environment contains uncertainties. The new methodology adapts an event-driven approach by optimizing the control for a planning horizon and updating it for a shorter action horizon. The proposed CRH controller addresses several issues including potential instabilities and oscillations. It also improves the estimated reward-to-go which enhances the overall performance of the controller. The other major contribution is that the originally infinite-dimensional feasible control set is reduced to a finite set at each time step which improves the computational cost of the controller. Second, a new event-driven methodology is studied for trajectory planning in multi-agent systems. A rigorous optimal control solution is employed using numerical solutions which turn out to be computationally infeasible in real time applications. The problem is then parameterized using several families of parametric trajectories. The solution to the parametric optimization relies on an unbiased estimate of the objective function's gradient obtained by the "Infinitesimal Perturbation Analysis" method. The premise of event-driven methods is that the events involved are observable so as to "excite" the underlying event-driven controller. However, it is not always obvious that these events actually take place under every feasible control in which case the controller may be useless. This issue of event excitation, which arises specially in multi-agent systems with a finite number of targets, is studied and addressed by introducing a novel performance measure which generates a potential field over the mission space. The effect of the new performance metric is demonstrated through simulation and analytical results

    An event-driven approach to control and optimization of multi-agent systems

    Get PDF
    This dissertation studies the application of several event-driven control schemes in multi-agent systems. First, a new cooperative receding horizon (CRH) controller is designed and applied to a class of maximum reward collection problems. Target rewards are time-variant with finite deadlines and the environment contains uncertainties. The new methodology adapts an event-driven approach by optimizing the control for a planning horizon and updating it for a shorter action horizon. The proposed CRH controller addresses several issues including potential instabilities and oscillations. It also improves the estimated reward-to-go which enhances the overall performance of the controller. The other major contribution is that the originally infinite-dimensional feasible control set is reduced to a finite set at each time step which improves the computational cost of the controller. Second, a new event-driven methodology is studied for trajectory planning in multi-agent systems. A rigorous optimal control solution is employed using numerical solutions which turn out to be computationally infeasible in real time applications. The problem is then parameterized using several families of parametric trajectories. The solution to the parametric optimization relies on an unbiased estimate of the objective function's gradient obtained by the "Infinitesimal Perturbation Analysis" method. The premise of event-driven methods is that the events involved are observable so as to "excite" the underlying event-driven controller. However, it is not always obvious that these events actually take place under every feasible control in which case the controller may be useless. This issue of event excitation, which arises specially in multi-agent systems with a finite number of targets, is studied and addressed by introducing a novel performance measure which generates a potential field over the mission space. The effect of the new performance metric is demonstrated through simulation and analytical results
    corecore