119,304 research outputs found

    Towards time-varying proximal dynamics in Multi-Agent Network Games

    Get PDF
    Distributed decision making in multi-agent networks has recently attracted significant research attention thanks to its wide applicability, e.g. in the management and optimization of computer networks, power systems, robotic teams, sensor networks and consumer markets. Distributed decision-making problems can be modeled as inter-dependent optimization problems, i.e., multi-agent game-equilibrium seeking problems, where noncooperative agents seek an equilibrium by communicating over a network. To achieve a network equilibrium, the agents may decide to update their decision variables via proximal dynamics, driven by the decision variables of the neighboring agents. In this paper, we provide an operator-theoretic characterization of convergence with a time-invariant communication network. For the time-varying case, we consider adjacency matrices that may switch subject to a dwell time. We illustrate our investigations using a distributed robotic exploration example.Comment: 6 pages, 3 figure

    Online Distributed Sensor Selection

    Full text link
    A key problem in sensor networks is to decide which sensors to query when, in order to obtain the most useful information (e.g., for performing accurate prediction), subject to constraints (e.g., on power and bandwidth). In many applications the utility function is not known a priori, must be learned from data, and can even change over time. Furthermore for large sensor networks solving a centralized optimization problem to select sensors is not feasible, and thus we seek a fully distributed solution. In this paper, we present Distributed Online Greedy (DOG), an efficient, distributed algorithm for repeatedly selecting sensors online, only receiving feedback about the utility of the selected sensors. We prove very strong theoretical no-regret guarantees that apply whenever the (unknown) utility function satisfies a natural diminishing returns property called submodularity. Our algorithm has extremely low communication requirements, and scales well to large sensor deployments. We extend DOG to allow observation-dependent sensor selection. We empirically demonstrate the effectiveness of our algorithm on several real-world sensing tasks

    Renyi Entropy based Target Tracking in Mobile Sensor Networks

    Get PDF
    This paper proposes an entropy based target tracking approach for mobile sensor networks. The proposed tracking algorithm runs a target state estimation stage and a motion control stage alternatively. A distributed particle filter is developed to estimate the target position in the first stage. This distributed particle filter does not require to transmit the weighted particles from one sensor node to another. Instead, a Gaussian mixture model is formulated to approximate the posterior distribution represented by the weighted particles via an EM algorithm. The EM algorithm is developed in a distributed form to compute the parameters of Gaussian mixture model via local communication, which leads to the distributed implementation of the particle filter. A flocking controller is developed to control the mobile sensor nodes to track the target in the second stage. The flocking control algorithm includes three components. Collision avoidance component is based on the design of a separation potential function. Alignment component is based on a consensus algorithm. Navigation component is based on the minimization of an quadratic Renyi entropy. The quadratic Renyi entropy of Gaussian mixture model has an analytical expression so that its optimization is feasible in mobile sensor networks. The proposed active tracking algorithm is tested in simulation. © 2011 IFAC

    Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling

    Full text link
    The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in various application domains, including distributed tracking and localization, multi-agent co-ordination, estimation in sensor networks, and large-scale optimization in machine learning. We develop and analyze distributed algorithms based on dual averaging of subgradients, and we provide sharp bounds on their convergence rates as a function of the network size and topology. Our method of analysis allows for a clear separation between the convergence of the optimization algorithm itself and the effects of communication constraints arising from the network structure. In particular, we show that the number of iterations required by our algorithm scales inversely in the spectral gap of the network. The sharpness of this prediction is confirmed both by theoretical lower bounds and simulations for various networks. Our approach includes both the cases of deterministic optimization and communication, as well as problems with stochastic optimization and/or communication.Comment: 40 pages, 4 figure
    • …
    corecore