19,430 research outputs found

    Enhancing Job Scheduling of an Atmospheric Intensive Data Application

    Get PDF
    Nowadays, e-Science applications involve great deal of data to have more accurate analysis. One of its application domains is the Radio Occultation which manages satellite data. Grid Processing Management is a physical infrastructure geographically distributed based on Grid Computing, that is implemented for the overall processing Radio Occultation analysis. After a brief description of algorithms adopted to characterize atmospheric profiles, the paper presents an improvement of job scheduling in order to decrease processing time and optimize resource utilization. Extension of grid computing capacity is implemented by virtual machines in existing physical Grid in order to satisfy temporary job requests. Also scheduling plays an important role in the infrastructure that is handled by a couple of schedulers which are developed to manage data automaticall

    Fuzzy C-Mean And Genetic Algorithms Based Scheduling For Independent Jobs In Computational Grid

    Get PDF
    The concept of Grid computing is becoming the most important research area in the high performance computing. Under this concept, the jobs scheduling in Grid computing has more complicated problems to discover a diversity of available resources, select the appropriate applications and map to suitable resources. However, the major problem is the optimal job scheduling, which Grid nodes need to allocate the appropriate resources for each job. In this paper, we combine Fuzzy C-Mean and Genetic Algorithms which are popular algorithms, the Grid can be used for scheduling. Our model presents the method of the jobs classifications based mainly on Fuzzy C-Mean algorithm and mapping the jobs to the appropriate resources based mainly on Genetic algorithm. In the experiments, we used the workload historical information and put it into our simulator. We get the better result when compared to the traditional algorithms for scheduling policies. Finally, the paper also discusses approach of the jobs classifications and the optimization engine in Grid scheduling

    Bulk Scheduling with the DIANA Scheduler

    Full text link
    Results from the research and development of a Data Intensive and Network Aware (DIANA) scheduling engine, to be used primarily for data intensive sciences such as physics analysis, are described. In Grid analyses, tasks can involve thousands of computing, data handling, and network resources. The central problem in the scheduling of these resources is the coordinated management of computation and data at multiple locations and not just data replication or movement. However, this can prove to be a rather costly operation and efficient sing can be a challenge if compute and data resources are mapped without considering network costs. We have implemented an adaptive algorithm within the so-called DIANA Scheduler which takes into account data location and size, network performance and computation capability in order to enable efficient global scheduling. DIANA is a performance-aware and economy-guided Meta Scheduler. It iteratively allocates each job to the site that is most likely to produce the best performance as well as optimizing the global queue for any remaining jobs. Therefore it is equally suitable whether a single job is being submitted or bulk scheduling is being performed. Results indicate that considerable performance improvements can be gained by adopting the DIANA scheduling approach.Comment: 12 pages, 11 figures. To be published in the IEEE Transactions in Nuclear Science, IEEE Press. 200
    • ā€¦
    corecore