3,332 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Internet of Satellites (IoSat): analysis of network models and routing protocol requirements

    Get PDF
    The space segment has been evolved from monolithic to distributed satellite systems. One of these distributed systems is called the federated satellite system (FSS) which aims at establishing a win-win collaboration between satellites to improve their mission performance by using the unused on-board resources. The FSS concept requires sporadic and direct communications between satellites, using inter satellite links. However, this point-to-point communication is temporal and thus it can break existent federations. Therefore, the conception of a multi-hop scenario needs to be addressed. This is the goal of the Internet of satellites (IoSat) paradigm which, as opposed to a common backbone, proposes the creation of a network using a peer-to-peer architecture. In particular, the same satellites take part of the network by establishing intermediate collaborations to deploy a FSS. This paradigm supposes a major challenge in terms of network definition and routing protocol. Therefore, this paper not only details the IoSat paradigm, but it also analyses the different satellite network models. Furthermore, it evaluates the routing protocol candidates that could be used to implement the IoSat paradigm.Peer ReviewedPostprint (author's final draft

    Satellite-based internet: A tutorial

    Get PDF
    In a satellite-based Internet system, satellites are used to interconnect heterogeneous network segments and to provide ubiquitous direct Internet access to homes and businesses. This article presents satellite-based Internet architectures and discusses multiple access control, routing, satellite transport, and integrating satellite networks into the global Internet.published_or_final_versio

    Satellite-based internet: A tutorial

    Get PDF
    In a satellite-based Internet system, satellites are used to interconnect heterogeneous network segments and to provide ubiquitous direct Internet access to homes and businesses. This article presents satellite-based Internet architectures and discusses multiple access control, routing, satellite transport, and integrating satellite networks into the global Internet.published_or_final_versio

    On Routing for Extending Satellite Service Life in LEO Satellite Networks

    Get PDF
    International audienceWe address the problem of routing for extending the service life of satellites in Iridium-like LEO constellations. Satellites in LEO constellations can spend over 30% of their time under the earth’s umbra, time during which they are powered by batteries. While the batteries are recharged by solar energy, the depth of discharge they reach during eclipse significantly affects their lifetime – and by extension, the service life of the satellites themselves. For batteries of the type that power Iridium satellites, a 15% increase to the depth of discharge can practically cut their service lives in half. We present two new routing metrics – LASER and SLIM – that try to strike a balance between performance and battery depth of discharge in LEO satellite constellations. Our basic approach is to leverage the deterministic movement of satellites for favoring routing traffic over satellites exposed to the sun as opposed to the eclipsed satellites, thereby decreasing the average battery depth of discharge – all without adversely affecting network performance Simulations show that LASER and SLIM can reduce the depth of discharge by about 11% and 16%, respectively, which can lead to as much as 100% increase in the satellite batteries lifetime. This is accomplished by trading off very little in terms of end-to-end delay
    • …
    corecore