1,885 research outputs found

    Constrained Consensus

    Full text link
    We present distributed algorithms that can be used by multiple agents to align their estimates with a particular value over a network with time-varying connectivity. Our framework is general in that this value can represent a consensus value among multiple agents or an optimal solution of an optimization problem, where the global objective function is a combination of local agent objective functions. Our main focus is on constrained problems where the estimate of each agent is restricted to lie in a different constraint set. To highlight the effects of constraints, we first consider a constrained consensus problem and present a distributed ``projected consensus algorithm'' in which agents combine their local averaging operation with projection on their individual constraint sets. This algorithm can be viewed as a version of an alternating projection method with weights that are varying over time and across agents. We establish convergence and convergence rate results for the projected consensus algorithm. We next study a constrained optimization problem for optimizing the sum of local objective functions of the agents subject to the intersection of their local constraint sets. We present a distributed ``projected subgradient algorithm'' which involves each agent performing a local averaging operation, taking a subgradient step to minimize its own objective function, and projecting on its constraint set. We show that, with an appropriately selected stepsize rule, the agent estimates generated by this algorithm converge to the same optimal solution for the cases when the weights are constant and equal, and when the weights are time-varying but all agents have the same constraint set.Comment: 35 pages. Included additional results, removed two subsections, added references, fixed typo

    Distributed Optimization: Convergence Conditions from a Dynamical System Perspective

    Full text link
    This paper explores the fundamental properties of distributed minimization of a sum of functions with each function only known to one node, and a pre-specified level of node knowledge and computational capacity. We define the optimization information each node receives from its objective function, the neighboring information each node receives from its neighbors, and the computational capacity each node can take advantage of in controlling its state. It is proven that there exist a neighboring information way and a control law that guarantee global optimal consensus if and only if the solution sets of the local objective functions admit a nonempty intersection set for fixed strongly connected graphs. Then we show that for any tolerated error, we can find a control law that guarantees global optimal consensus within this error for fixed, bidirectional, and connected graphs under mild conditions. For time-varying graphs, we show that optimal consensus can always be achieved as long as the graph is uniformly jointly strongly connected and the nonempty intersection condition holds. The results illustrate that nonempty intersection for the local optimal solution sets is a critical condition for successful distributed optimization for a large class of algorithms
    corecore