1,921 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    Content Delivery Latency of Caching Strategies for Information-Centric IoT

    Full text link
    In-network caching is a central aspect of Information-Centric Networking (ICN). It enables the rapid distribution of content across the network, alleviating strain on content producers and reducing content delivery latencies. ICN has emerged as a promising candidate for use in the Internet of Things (IoT). However, IoT devices operate under severe constraints, most notably limited memory. This means that nodes cannot indiscriminately cache all content; instead, there is a need for a caching strategy that decides what content to cache. Furthermore, many applications in the IoT space are timesensitive; therefore, finding a caching strategy that minimises the latency between content request and delivery is desirable. In this paper, we evaluate a number of ICN caching strategies in regards to latency and hop count reduction using IoT devices in a physical testbed. We find that the topology of the network, and thus the routing algorithm used to generate forwarding information, has a significant impact on the performance of a given caching strategy. To the best of our knowledge, this is the first study that focuses on latency effects in ICN-IoT caching while using real IoT hardware, and the first to explicitly discuss the link between routing algorithm, network topology, and caching effects.Comment: 10 pages, 9 figures, journal pape

    Distributed on-line multidimensional scaling for self-localization in wireless sensor networks

    Full text link
    The present work considers the localization problem in wireless sensor networks formed by fixed nodes. Each node seeks to estimate its own position based on noisy measurements of the relative distance to other nodes. In a centralized batch mode, positions can be retrieved (up to a rigid transformation) by applying Principal Component Analysis (PCA) on a so-called similarity matrix built from the relative distances. In this paper, we propose a distributed on-line algorithm allowing each node to estimate its own position based on limited exchange of information in the network. Our framework encompasses the case of sporadic measurements and random link failures. We prove the consistency of our algorithm in the case of fixed sensors. Finally, we provide numerical and experimental results from both simulated and real data. Simulations issued to real data are conducted on a wireless sensor network testbed.Comment: 32 pages, 5 figures, 1 tabl

    Improve Performance Wireless Sensor Network Localization using RSSI and AEMM

    Get PDF
    Improve wireless sensor network localisation performance using RSSI and an advanced error minimisation method (AEMM). WSNs remain domain-specific and are typically deployed to support a single application. However, as WSN nodes become more powerful, it becomes increasingly important to investigate how multiple applications can share the same WSN infrastructure. Virtualisation is a technology that may allow for this sharing. The issues surrounding wireless sensor node localisation estimation are still being researched. There are a large number of Wireless Sensor Networks (WSNs) with limited computing, sensing, and energy capabilities. Localisation is one of the most important topics in wireless sensor networks (WSNs) because location information is typically useful for many applications. The locations of anchor nodes and the distances between neighbouring nodes are the primary data in a localisation process. The complexity and diversity of current and future wireless detector network operations drive this. Several single schemes have been proposed and studied for position estimation, each with advantages and limitations. Nonetheless, current methods for evaluating the performance of wireless detector networks are heavily focused on a single private or objective evaluation. Accurate position information in a wireless detector network is critical for colourful arising operations (WSN). It is critical to reducing the goods of noisy distance measures to improve localisation accuracy. Existing works (RSSI) are detailed and critically evaluated, with a higher error rate using a set of scenario requirements. Our proposed method (AEMM) is critical for detecting and dealing with outliers in wireless sensor networks to achieve a low localisation error rate. The proposed method (AEMM) for localisation and positioning nodes in wireless sensor networks supported by IOT and discovering the appropriate position of several nodes addresses all of the issues in WSN

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices
    • …
    corecore