53,569 research outputs found

    Kriptografi Dan Skema Keamanan Untuk Jaringan Sensor Nirkawat

    Full text link
    This paper attempts to explore the security issues in sensor network that include constraints in sensor networks security, the requirements of secure sensor networks, attack classification and its counter measures and security mechanisms at wirelesssensor network (WSN) such as cryptography and key management. Popularity of wireless sensor network is increasing because of its potential to provide low-cost solution for a variety of real-world problem. As a special form of ad-hoc networks, sensor networks has many limitations that lead to vulnerabilities in security issues. Currently, there are many researches in the field of sensor network security. Our analysis shows that symmetric key cryptography systems are more favorable to provide WSN security services because of its computation and energy cost. Moreover, distributed combine with pre-distributed key management is important to overcome security threats and centralize threats detection is more favorable to reduce energy and computation cost of sensor nodes

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Signal processing for distributed nodes in smart networks

    No full text
    With increasing environmental concern for energy conservation and mitigating climate change, next generation smart networks are bound to provide improved performance in terms of security, reliability, and energy efficiency. For instance, future smart networks will work in highly complex and dynamic environments and will have distributed nodes that need to interact with each other and may also interact with an energy provider in order to improve their performance. In this context, advanced signal processing tools such as game theory and distributed transmit beamforming can yield tremendous performance gains in terms of energy efficiency for demand management and signal trans-mission in smart networks. The central theme of this dissertation is the modeling of energy usage behavior of self-seeking distributed nodes in smart networks. The thesis mainly looks into two key areas of smart networks: 1) smart grid networks and 2) wireless sensor networks, and contains: an analytical framework of the economics of electric vehicle charging in smart grids in an energy constrained environment; a study of a consumer-centric energy management scheme for encouraging the consumers in a smart grid to voluntarily take part in energy management; an outage management scheme for efficiently curtailing energy from the consumers in smart grids in the event of a power outage; a comprehensive study of power control of sensors in a wireless sensor network using game theory and distributed transmit beamforming; and finally, an energy aware distributed transmit beamfoming technique for long distance signal transmission in a wireless sensor network. This thesis addresses the challenges of modeling the energy usage behavior of distributed nodes through studying the propriety of energy users in smart networks, 1) by capturing the interactions between the energy users and energy provider in smart grids using non-cooperative Stackelberg and generalized Nash games, and showing that the socially optimal energy management for users can be achieved at the solution of the games, and 2) by studying the power control of sensors in wireless sensor networks, using a non-cooperative Nash game and distributed transmit beamforming that demonstrates significant transmit energy savings for the sensors. To foster energy efficient transmission, the thesis also studies a distributed transmit beamforming technique that does not require any channel state information for long distance signal transmission in sensor networks. The contributions of this dissertation are enhanced by proposing suitable system models and appropriate signal processing techniques. These models and techniques can capture the different cost-benefit tradeoffs that exist in these networks. All the proposed schemes in this dissertation are shown to have significant performance improvement when compared with existing solutions. The work in this thesis demonstrates that modeling power usage behavior of distributed nodes in smart networks is both possible and beneficial for increasing the energy efficiency of these networks

    Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    Get PDF
    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths

    Secure and Efficient DiDrip Protocol for Improving Performance of WSNs

    Full text link
    Wireless Sensor Networks consists of a set of resource constrained devices called nodes that communicate wirelessly with each other. Wireless Sensor Networks have become a key application in number of technologies. It also measures the unit of vulnerability to security threats. Several Protocols are projected to make them secure. Some of the protocols within the sensor network specialize in securing data. These protocols are named as data discovery and dissemination protocols. The data discovery and dissemination protocol for wireless sensor networks are utilized for distributing management commands and altering configuration parameters to the sensor nodes. All existing data discovery and dissemination protocols primarily suffer from two drawbacks. Basically, they are support centralized approach (only single station can distribute data item).This approach is not suitable for multiple owner-multiple users. Second, the protocols are not designed with security in mind. This Paper proposes the first distributed knowledge discovery and dissemination protocol called DiDrip which is safer than the existing one. The protocol permits multiple owners to authorize many network users with altogether totally different priorities to at an equivalent time and directly flow into data items to sensor nodes

    Security in heterogeneous wireless networks

    Get PDF
    The proliferation of a range of wireless devices, from the cheap low power resource starved sensor nodes to the ubiquitous cell phones and PDA\u27s has resulted in their use in many applications. Due to their inherent broadcast nature Security and Privacy in wireless networks is harder than the wired networks. Along with the traditional security requirements like confidentiality, integrity and non-repudiation new requirements like privacy and anonymity are important in wireless networks. These factors combined with the fact that nodes in a wireless network may have different resource availabilities and trust levels makes security in wireless networks extremely challenging. The functional lifetime of sensor networks in general is longer than the operational lifetime of a single node, due to limited battery power. Therefore to keep the network working multiple deployments of sensor nodes are needed. In this thesis, we analyze the vulnerability of the existing key predistribution schemes arising out of the repeated use of fixed key information through multiple deployments. We also develop SCON, an approach for key management that provides a significant improvement in security using multiple key pools. SCON performs better in a heterogeneous environment. We present a key distribution scheme that allows mobile sensor nodes to connect with stationary nodes of several networks. We develop a key distribution scheme for a semi ad-hoc network of cell phones. This scheme ensures that cell phones are able to communicate securely with each other when the phones are unable to connect to the base station. It is different from the traditional ad hoc networks because the phones were part of a centralized network before the base station ceased to work. This allows efficient distribution of key material making the existing schemes for ad hoc networks ineffective. In this thesis we present a mechanism for implementing authenticated broadcasts which ensure non-repudiation using identity based cryptography. We also develop a reputation based mechanism for the distributed detection and revocation of malicious cell phones. Schemes which use the cell phone for secure spatial authentication have also been presented

    A New Extensible Key Exchange Scheme For Wireless Sensor Networks

    Get PDF
    A sensor network is confident of a large number of sensor nodes Sensor nodes are small, low-cost, low-power devices that have following performance communicate on short distances sense environmental data perform limited data processing The network usually also contains “sink” node which connects it to the outside world. Advances in technology introduce new application areas for sensor networks. Foreseeable wide deployment of mission critical sensor networks creates concerns on security issues. Security of large scale slowly deployed and infrastructure-less wireless networks of resource limited sensor nodes requires efficient key distribution and management mechanisms. We consider distributed and hierarchical wireless sensor networks where unjust, multicast and broadcast type of communications can take place. We evaluate deterministic, probabilistic and hybrid type of key pre-distribution and dynamic key generation algorithms for distributing combination and network-wise keys
    • …
    corecore