1,030 research outputs found

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Cyber-resilient Automatic Generation Control for Systems of AC Microgrids

    Full text link
    In this paper we propose a co-design of the secondary frequency regulation in systems of AC microgrids and its cyber securty solutions. We term the secondary frequency regulator a Micro-Automatic Generation Control (Micro-AGC) for highlighting its same functionality as the AGC in bulk power systems. We identify sensory challenges and cyber threats facing the Micro-AGC. To address the sensory challenges, we introduce a new microgrid model by exploiting the rank-one deficiency property of microgrid dynamics. This model is used to pose an optimal Micro-AGC control problem that is easily implemented, because it does not require fast frequency measurements. An end-to-end cyber security solution to the False Data Injection (FDI) attack detection and mitigation is developed for the proposed Micro-AGC. The front-end barrier of applying off-the-shelf algorithms for cyber attack detection is removed by introducing a data-driven modeling approach. Finally, we propose an observer-based corrective control for an islanded microgrid and a collaborative mitigation schemes in systems of AC microgrids. We demonstrate a collaborative role of systems of microgrids during cyber attacks. The performance of the proposed cyber-resilient Micro-AGC is tested in a system of two networked microgrids.Comment: The manuscript has been accepted by IEEE Transactions on Smart Gri

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Secure Data Management and Transmission Infrastructure for the Future Smart Grid

    Get PDF
    Power grid has played a crucial role since its inception in the Industrial Age. It has evolved from a wide network supplying energy for incorporated multiple areas to the largest cyber-physical system. Its security and reliability are crucial to any country’s economy and stability [1]. With the emergence of the new technologies and the growing pressure of the global warming, the aging power grid can no longer meet the requirements of the modern industry, which leads to the proposal of ‘smart grid’. In smart grid, both electricity and control information communicate in a massively distributed power network. It is essential for smart grid to deliver real-time data by communication network. By using smart meter, AMI can measure energy consumption, monitor loads, collect data and forward information to collectors. Smart grid is an intelligent network consists of many technologies in not only power but also information, telecommunications and control. The most famous structure of smart grid is the three-layer structure. It divides smart grid into three different layers, each layer has its own duty. All these three layers work together, providing us a smart grid that monitor and optimize the operations of all functional units from power generation to all the end-customers [2]. To enhance the security level of future smart grid, deploying a high secure level data transmission scheme on critical nodes is an effective and practical approach. A critical node is a communication node in a cyber-physical network which can be developed to meet certain requirements. It also has firewalls and capability of intrusion detection, so it is useful for a time-critical network system, in other words, it is suitable for future smart grid. The deployment of such a scheme can be tricky regarding to different network topologies. A simple and general way is to install it on every node in the network, that is to say all nodes in this network are critical nodes, but this way takes time, energy and money. Obviously, it is not the best way to do so. Thus, we propose a multi-objective evolutionary algorithm for the searching of critical nodes. A new scheme should be proposed for smart grid. Also, an optimal planning in power grid for embedding large system can effectively ensure every power station and substation to operate safely and detect anomalies in time. Using such a new method is a reliable method to meet increasing security challenges. The evolutionary frame helps in getting optimum without calculating the gradient of the objective function. In the meanwhile, a means of decomposition is useful for exploring solutions evenly in decision space. Furthermore, constraints handling technologies can place critical nodes on optimal locations so as to enhance system security even with several constraints of limited resources and/or hardware. The high-quality experimental results have validated the efficiency and applicability of the proposed approach. It has good reason to believe that the new algorithm has a promising space over the real-world multi-objective optimization problems extracted from power grid security domain. In this thesis, a cloud-based information infrastructure is proposed to deal with the big data storage and computation problems for the future smart grid, some challenges and limitations are addressed, and a new secure data management and transmission strategy regarding increasing security challenges of future smart grid are given as well

    Graphical Convolution Network Based Semi-Supervised Methods for Detecting PMU Data Manipulation Attacks

    Get PDF
    With the integration of information and communications technologies (ICTs) into the power grid, electricity infrastructures are gradually transformed towards smart grid and power systems become more open to and accessible from outside networks. With ubiquitous sensors, computers and communication networks, modern power systems have become complicated cyber-physical systems. The cyber security issues and the impact of potential attacks on the smart grid have become an important issue. Among these attacks, false data injection attack (FDIA) becomes a growing concern because of its varied types and impacts. Several detection algorithms have been developed in the last few years, which were model-based, trajectory prediction-based or learning-based methods. Phasor measurement units (PMUs) and supervisory control and data acquisition (SCADA) system work together to monitor the power system operation. The unsecured devices could offer opportunities to adversaries to compromise the system. In the literature review part of this thesis, the main methods are compared considering computing accuracy and complexity. Most work about PMUs ignored the reality that the number of PMUs installed in a power system is limited to realize observability because of high installing cost. Therefore, based on observable truth of PMU and the topology structure of power system, the graph convolution network (GCN) is proposed in this thesis. The main idea is using selected features to define violated PMU, and GCN is used to classify susceptible violated nodes and normal nodes. The basic detection method is introduced at first. And then the calculation process of neural network and Fourier transform are described with more details about graph convolution network. Later, the proposed detection mechanism and algorithm are introduced. Finally, the simulation results are given and analyzed

    Cyber-Physical Security Strategies

    Get PDF
    Cyber-physical security describes the protection of systems with close relationships between computational functions and physical ones and addresses the issue of vulnerability to attack through both cyber and physical avenues. This describes systems in a wide variety of functions, many crucial to the function of modern society, making their security of paramount importance. The development of secure system design and attack detection strategies for each potential avenue of attack is needed to combat malicious attacks. This thesis will provide an overview of the approaches to securing different aspect of cyber-physical systems. The cyber element can be designed to better prevent unauthorized entry and to be more robust to attack while its use is evaluated for signs of ongoing intrusion. Nodes in sensor networks can be evaluated by their claims to determine the likelihood of their honesty. Control systems can be designed to be robust in cases of the failure of one component and to detect signal insertion or replay attack. Through the application of these strategies, the safety and continued function of cyber-physical systems can be improved

    Blockchain-Based and Fuzzy Logic-Enabled False Data Discovery for the Intelligent Autonomous Vehicular System

    Full text link
    Since the beginning of this decade, several incidents report that false data injection attacks targeting intelligent connected vehicles cause huge industrial damage and loss of lives. Data Theft, Flooding, Fuzzing, Hijacking, Malware Spoofing and Advanced Persistent Threats have been immensely growing attack that leads to end-user conflict by abolishing trust on autonomous vehicle. Looking after those sensitive data that contributes to measure the localisation factors of the vehicle, conventional centralised techniques can be misused to update the legitimate vehicular status maliciously. As investigated, the existing centralized false data detection approach based on state and likelihood estimation has a reprehensible trade-off in terms of accuracy, trust, cost, and efficiency. Blockchain with Fuzzy-logic Intelligence has shown its potential to solve localisation issues, trust and false data detection challenges encountered by today's autonomous vehicular system. The proposed Blockchain-based fuzzy solution demonstrates a novel false data detection and reputation preservation technique. The illustrated proposed model filters false and anomalous data based on the vehicles' rules and behaviours. Besides improving the detection accuracy and eliminating the single point of failure, the contributions include appropriating fuzzy AI functions within the Road-side Unit node before authorizing status data by a Blockchain network. Finally, thorough experimental evaluation validates the effectiveness of the proposed model.Comment: 11 pages, 11 figures, 4 tables AsiaCCS conference 202
    • …
    corecore