19,275 research outputs found

    PFPS: Priority-First Packet Scheduler for IEEE 802.15.4 Heterogeneous Wireless Sensor Networks

    Get PDF
    This paper presents priority-first packet scheduling approach for heterogeneous traffic flows in low data rate heterogeneous wireless sensor networks (HWSNs). A delay sensitive or emergency event occurrence demands the data delivery on the priority basis over regular monitoring sensing applications. In addition, handling sudden multi-event data and achieving their reliability requirements distinctly becomes the challenge and necessity in the critical situations. To address this problem, this paper presents distributed approach of managing data transmission for simultaneous traffic flows over multi-hop topology, which reduces the load of a sink node; and helps to make a life of the network prolong. For this reason, heterogeneous traffic flows algorithm (CHTF) algorithm classifies the each incoming packets either from source nodes or downstream hop node based on the packet priority and stores them into the respective queues. The PFPS-EDF and PFPS-FCFS algorithms present scheduling for each data packets using priority weight. Furthermore, reporting rate is timely updated based on the queue level considering their fairness index and processing rate. The reported work in this paper is validated in ns2 (ns2.32 allinone) simulator by putting the network into each distinct cases for validation of presented work and real time TestBed. The protocol evaluation presents that the distributed queue-based PFPS scheduling mechanism works efficiently using CSMA/CA MAC protocol of the IEEE 802.15.4 sensor networks

    Distributed Rate Allocation Policies for Multi-Homed Video Streaming over Heterogeneous Access Networks

    Full text link
    We consider the problem of rate allocation among multiple simultaneous video streams sharing multiple heterogeneous access networks. We develop and evaluate an analytical framework for optimal rate allocation based on observed available bit rate (ABR) and round-trip time (RTT) over each access network and video distortion-rate (DR) characteristics. The rate allocation is formulated as a convex optimization problem that minimizes the total expected distortion of all video streams. We present a distributed approximation of its solution and compare its performance against H-infinity optimal control and two heuristic schemes based on TCP-style additive-increase-multiplicative decrease (AIMD) principles. The various rate allocation schemes are evaluated in simulations of multiple high-definition (HD) video streams sharing multiple access networks. Our results demonstrate that, in comparison with heuristic AIMD-based schemes, both media-aware allocation and H-infinity optimal control benefit from proactive congestion avoidance and reduce the average packet loss rate from 45% to below 2%. Improvement in average received video quality ranges between 1.5 to 10.7 dB in PSNR for various background traffic loads and video playout deadlines. Media-aware allocation further exploits its knowledge of the video DR characteristics to achieve a more balanced video quality among all streams.Comment: 12 pages, 22 figure
    • …
    corecore